1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2026-01-01 01:41:18 +01:00

cpu: Initial import of stm32f4

This commit is contained in:
Hauke Petersen 2014-04-17 19:40:22 +02:00
parent 99ecd4839a
commit 2fa9b4de82
17 changed files with 10550 additions and 0 deletions

7
cpu/stm32f4/Makefile Normal file
View File

@ -0,0 +1,7 @@
# define the module that is build
MODULE = cpu
# add a list of subdirectories, that should also be build
DIRS = periph $(CORTEX_M4_COMMON)
include $(RIOTBASE)/Makefile.base

View File

@ -0,0 +1,28 @@
# this CPU implementation is using the explicit core/CPU interface
export CFLAGS += -DCOREIF_NG=1
# export the peripheral drivers to be linked into the final binary
export USEMODULE += periph
# tell the build system that the CPU depends on the Cortex-M common files
export USEMODULE += cortex-m4_common
# define path to cortex-m common module, which is needed for this CPU
export CORTEX_M4_COMMON = $(RIOTCPU)/cortex-m4_common/
# CPU depends on the cortex-m common module, so include it
include $(CORTEX_M4_COMMON)Makefile.include
# define the linker script to use for this CPU
export LINKERSCRIPT = $(RIOTCPU)/$(CPU)/$(CPU_MODEL)_linkerscript.ld
#export the CPU model
MODEL = $(shell echo $(CPU_MODEL)|tr 'a-z' 'A-Z')
export CFLAGS += -DCPU_MODEL_$(MODEL)
# include CPU specific includes
export INCLUDES += -I$(RIOTCPU)/$(CPU)/include
# add the CPU specific system calls implementations for the linker
export UNDEF += $(BINDIR)cpu/syscalls.o
export UNDEF += $(BINDIR)cpu/startup.o

150
cpu/stm32f4/cpu.c Normal file
View File

@ -0,0 +1,150 @@
/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f4
* @{
*
* @file
* @brief Implementation of the CPU initialization
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @}
*/
#include <stdint.h>
#include "cpu.h"
#include "periph_conf.h"
/**
* @name Pattern to write into the Coprocessor Access Control Register to allow full FPU access
*/
#define FULL_FPU_ACCESS (0x00f00000)
static void cpu_clock_init(void);
/**
* @brief Initialize the CPU, set IRQ priorities
*/
void cpu_init(void)
{
/* give full access to the FPU */
SCB->CPACR |= (uint32_t)FULL_FPU_ACCESS;
/* configure the vector table location to internal flash */
SCB->VTOR = FLASH_BASE;
/* initialize the clock system */
cpu_clock_init();
/* set pendSV interrupt to lowest possible priority */
NVIC_SetPriority(PendSV_IRQn, 0xff);
}
/**
* @brief Configure the controllers clock system
*
* The clock initialization make the following assumptions:
* - the external HSE clock from an external oscillator is used as base clock
* - the internal PLL circuit is used for clock refinement
*
* Use the following formulas to calculate the needed values:
*
* SYSCLK = ((HSE_VALUE / CLOCK_PLL_M) * CLOCK_PLL_N) / CLOCK_PLL_P
* USB, SDIO and RNG Clock = ((HSE_VALUE / CLOCK_PLL_M) * CLOCK_PLL_N) / CLOCK_PLL_Q
*
* The actual used values are specified in the board's `periph_conf.h` file.
*
* NOTE: currently there is not timeout for initialization of PLL and other locks
* -> when wrong values are chosen, the initialization could stall
*/
static void cpu_clock_init(void)
{
/* configure the HSE clock */
/* enable the HSI clock */
RCC->CR |= RCC_CR_HSION;
/* reset clock configuration register */
RCC->CFGR = 0;
/* disable HSE, CSS and PLL */
RCC->CR &= ~(RCC_CR_HSEON | RCC_CR_HSEBYP | RCC_CR_CSSON | RCC_CR_PLLON);
/* disable all clock interrupts */
RCC->CIR = 0;
/* enable the HSE clock */
RCC->CR |= RCC_CR_HSEON;
/* wait for HSE to be ready */
while (!(RCC->CR & RCC_CR_HSERDY));
/* setup power module */
/* enable the power module */
RCC->APB1ENR |= RCC_APB1ENR_PWREN;
/* set the voltage scaling to 1 to enable the maximum frequency */
PWR->CR |= PWR_CR_VOS_1;
/* setup the peripheral bus prescalers */
/* set the AHB clock divider */
RCC->CFGR &= ~RCC_CFGR_HPRE;
RCC->CFGR |= CLOCK_AHB_DIV;
/* set the APB2 (high speed) bus clock divider */
RCC->CFGR &= ~RCC_CFGR_PPRE2;
RCC->CFGR |= CLOCK_APB2_DIV;
/* set the APB1 (low speed) bus clock divider */
RCC->CFGR &= ~RCC_CFGR_PPRE1;
RCC->CFGR |= CLOCK_APB1_DIV;
/* configure the PLL */
/* reset PLL config register */
RCC->PLLCFGR = 0;
/* set HSE as source for the PLL */
RCC->PLLCFGR |= RCC_PLLCFGR_PLLSRC_HSE;
/* set division factor for main PLL input clock */
RCC->PLLCFGR |= (CLOCK_PLL_M & 0x3F);
/* set main PLL multiplication factor for VCO */
RCC->PLLCFGR |= (CLOCK_PLL_N & 0x1FF) << 6;
/* set main PLL division factor for main system clock */
RCC->PLLCFGR |= (((CLOCK_PLL_P & 0x03) >> 1) - 1) << 16;
/* set main PLL division factor for USB OTG FS, SDIO and RNG clocks */
RCC->PLLCFGR |= (CLOCK_PLL_Q & 0x0F) << 24;
/* enable PLL again */
RCC->CR |= RCC_CR_PLLON;
/* wait until PLL is stable */
while(!(RCC->CR & RCC_CR_PLLRDY));
/* configure flash latency */
/* reset flash access control register */
FLASH->ACR = 0;
/* enable instruction cache */
FLASH->ACR |= FLASH_ACR_ICEN;
/* enable data cache */
FLASH->ACR |= FLASH_ACR_DCEN;
/* enable pre-fetch buffer */
// FLASH->ACR |= FLASH_ACR_PRFTEN;
/* set flash latency */
FLASH->ACR &= ~FLASH_ACR_LATENCY;
FLASH->ACR |= CLOCK_FLASH_LATENCY;
/* configure the sysclock and the peripheral clocks */
/* set sysclock to be driven by the PLL clock */
RCC->CFGR &= ~RCC_CFGR_SW;
RCC->CFGR |= RCC_CFGR_SW_PLL;
/* wait for sysclock to be stable */
while (!(RCC->CFGR & RCC_CFGR_SWS_PLL));
}

View File

@ -0,0 +1,77 @@
/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f4
* @{
*
* @file
* @brief Implementation of the kernels hwtimer interface
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include "arch/hwtimer_arch.h"
#include "board.h"
#include "periph/timer.h"
#include "thread.h"
/**
* @brief Callback function that is given to the low-level timer
*
* @param[in] channel the channel of the low-level timer that was triggered
*/
void irq_handler(int channel);
/**
* @brief Hold a reference to the hwtimer callback
*/
void (*timeout_handler)(int);
void hwtimer_arch_init(void (*handler)(int), uint32_t fcpu)
{
timeout_handler = handler;
timer_init(HW_TIMER, 1, &irq_handler);
}
void hwtimer_arch_enable_interrupt(void)
{
timer_irq_enable(HW_TIMER);
}
void hwtimer_arch_disable_interrupt(void)
{
timer_irq_disable(HW_TIMER);
}
void hwtimer_arch_set(unsigned long offset, short timer)
{
timer_set(HW_TIMER, timer, offset);
}
void hwtimer_arch_set_absolute(unsigned long value, short timer)
{
timer_set_absolute(HW_TIMER, timer, value);
}
void hwtimer_arch_unset(short timer)
{
timer_clear(HW_TIMER, timer);
}
unsigned long hwtimer_arch_now(void)
{
return timer_read(HW_TIMER);
}
void irq_handler(int channel)
{
timeout_handler((short)(channel));
}

View File

@ -0,0 +1,55 @@
/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @defgroup cpu_stm32f4 STM32F4
* @ingroup cpu
* @brief CPU specific implementations for the STM32F4
* @{
*
* @file
* @brief Implementation specific CPU configuration options
*
* @author Hauke Petersen <hauke.peterse@fu-berlin.de>
*/
#ifndef __CPU_CONF_H
#define __CPU_CONF_H
#ifdef CPU_MODEL_STM32F407VG
#include "stm32f407xx.h"
#endif
/**
* @name Kernel configuration
*
* TODO: measure and adjust for the Cortex-M4f
* @{
*/
#define KERNEL_CONF_STACKSIZE_PRINTF (2500)
#ifndef KERNEL_CONF_STACKSIZE_DEFAULT
#define KERNEL_CONF_STACKSIZE_DEFAULT (2500)
#endif
#define KERNEL_CONF_STACKSIZE_IDLE (512)
/** @} */
/**
* @name UART0 buffer size definition for compatibility reasons
*
* TODO: remove once the remodeling of the uart0 driver is done
* @{
*/
#ifndef UART0_BUFSIZE
#define UART0_BUFSIZE (128)
#endif
/** @} */
#endif /* __CPU_CONF_H */
/** @} */

View File

@ -0,0 +1,32 @@
/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f4
* @{
*
* @file
* @brief CPU specific hwtimer configuration options
*
* @author Hauke Petersen <hauke.peterse@fu-berlin.de>
*/
#ifndef __HWTIMER_CPU_H
#define __HWTIMER_CPU_H
/**
* @name Hardware timer configuration
* @{
*/
#define HWTIMER_MAXTIMERS 4 /**< the CPU implementation supports 4 HW timers */
#define HWTIMER_SPEED 1000000 /**< the HW timer runs with 1MHz */
#define HWTIMER_MAXTICKS (0xFFFFFFFF) /**< 32-bit timer */
/** @} */
#endif /* __HWTIMER_CPU_H */
/** @} */

File diff suppressed because it is too large Load Diff

31
cpu/stm32f4/io_arch.c Normal file
View File

@ -0,0 +1,31 @@
/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f4
* @{
*
* @file
* @brief Implementation of the kernel's architecture dependent IO interface
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include "board.h"
#include "arch/io_arch.h"
#include "periph/uart.h"
int io_arch_puts(char *data, int size)
{
for (int i = 0; i < size; i++) {
uart_write_blocking(STDIO, data[i]);
}
return size;
}

53
cpu/stm32f4/lpm_arch.c Normal file
View File

@ -0,0 +1,53 @@
/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f4
* @{
*
* @file
* @brief Implementation of the kernels power management interface
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include "arch/lpm_arch.h"
void lpm_arch_init(void)
{
/* TODO */
}
enum lpm_mode lpm_arch_set(enum lpm_mode target)
{
/* TODO */
return 0;
}
enum lpm_mode lpm_arch_get(void)
{
/* TODO */
return 0;
}
void lpm_arch_awake(void)
{
/* TODO */
}
void lpm_arch_begin_awake(void)
{
/* TODO */
}
void lpm_arch_end_awake(void)
{
/* TODO */
}

View File

@ -0,0 +1,3 @@
MODULE = periph
include $(RIOTBASE)/Makefile.base

758
cpu/stm32f4/periph/gpio.c Normal file
View File

@ -0,0 +1,758 @@
/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f4
* @{
*
* @file
* @brief Low-level GPIO driver implementation
*
* @author Hauke Petersen <mail@haukepetersen.de>
*
* @}
*/
#include "cpu.h"
#include "sched.h"
#include "thread.h"
#include "periph/gpio.h"
#include "periph_conf.h"
typedef struct {
void (*cb)(void);
} gpio_state_t;
/**
* @brief Unified IRQ handler shared by all interrupt routines
*
* @param[in] dev the device that triggered the interrupt
*/
static inline void irq_handler(gpio_t dev);
/**
* @brief Hold one callback function pointer for each gpio device
*/
static gpio_state_t config[GPIO_NUMOF];
int gpio_init_out(gpio_t dev, gpio_pp_t pushpull)
{
GPIO_TypeDef *port;
uint32_t pin;
switch (dev) {
#if GPIO_0_EN
case GPIO_0:
GPIO_0_CLKEN();
port = GPIO_0_PORT;
pin = GPIO_0_PIN;
break;
#endif
#if GPIO_1_EN
case GPIO_1:
GPIO_1_CLKEN();
port = GPIO_1_PORT;
pin = GPIO_1_PIN;
break;
#endif
#if GPIO_2_EN
case GPIO_2:
GPIO_2_CLKEN();
port = GPIO_2_PORT;
pin = GPIO_2_PIN;
break;
#endif
#if GPIO_3_EN
case GPIO_3:
GPIO_3_CLKEN();
port = GPIO_3_PORT;
pin = GPIO_3_PIN;
break;
#endif
#if GPIO_4_EN
case GPIO_4:
GPIO_4_CLKEN();
port = GPIO_4_PORT;
pin = GPIO_4_PIN;
break;
#endif
#if GPIO_5_EN
case GPIO_5:
GPIO_5_CLKEN();
port = GPIO_5_PORT;
pin = GPIO_5_PIN;
break;
#endif
#if GPIO_6_EN
case GPIO_6:
GPIO_6_CLKEN();
port = GPIO_6_PORT;
pin = GPIO_6_PIN;
break;
#endif
#if GPIO_7_EN
case GPIO_7:
GPIO_7_CLKEN();
port = GPIO_7_PORT;
pin = GPIO_7_PIN;
break;
#endif
#if GPIO_8_EN
case GPIO_8:
GPIO_8_CLKEN();
port = GPIO_8_PORT;
pin = GPIO_8_PIN;
break;
#endif
#if GPIO_9_EN
case GPIO_9:
GPIO_9_CLKEN();
port = GPIO_9_PORT;
pin = GPIO_9_PIN;
break;
#endif
#if GPIO_10_EN
case GPIO_10:
GPIO_10_CLKEN();
port = GPIO_10_PORT;
pin = GPIO_10_PIN;
break;
#endif
#if GPIO_11_EN
case GPIO_11:
GPIO_11_CLKEN();
port = GPIO_11_PORT;
pin = GPIO_11_PIN;
break;
#endif
case GPIO_UNDEFINED:
default:
return -1;
}
port->MODER &= ~(2 << (2 * pin)); /* set pin to output mode */
port->MODER |= (1 << (2 * pin));
port->OTYPER &= ~(1 << pin); /* set to push-pull configuration */
port->OSPEEDR |= (3 << (2 * pin)); /* set to high speed */
port->PUPDR &= ~(3 << (2 * pin)); /* configure push-pull resistors */
port->PUPDR |= (pushpull << (2 * pin));
port->ODR &= ~(1 << pin); /* set pin to low signal */
return 0; /* all OK */
}
int gpio_init_in(gpio_t dev, gpio_pp_t pushpull)
{
GPIO_TypeDef *port;
uint32_t pin;
switch (dev) {
#if GPIO_0_EN
case GPIO_0:
GPIO_0_CLKEN();
port = GPIO_0_PORT;
pin = GPIO_0_PIN;
break;
#endif
#if GPIO_1_EN
case GPIO_1:
GPIO_1_CLKEN();
port = GPIO_1_PORT;
pin = GPIO_1_PIN;
break;
#endif
#if GPIO_2_EN
case GPIO_2:
GPIO_2_CLKEN();
port = GPIO_2_PORT;
pin = GPIO_2_PIN;
break;
#endif
#if GPIO_3_EN
case GPIO_3:
GPIO_3_CLKEN();
port = GPIO_3_PORT;
pin = GPIO_3_PIN;
break;
#endif
#if GPIO_4_EN
case GPIO_4:
GPIO_4_CLKEN();
port = GPIO_4_PORT;
pin = GPIO_4_PIN;
break;
#endif
#if GPIO_5_EN
case GPIO_5:
GPIO_5_CLKEN();
port = GPIO_5_PORT;
pin = GPIO_5_PIN;
break;
#endif
#if GPIO_6_EN
case GPIO_6:
GPIO_6_CLKEN();
port = GPIO_6_PORT;
pin = GPIO_6_PIN;
break;
#endif
#if GPIO_7_EN
case GPIO_7:
GPIO_7_CLKEN();
port = GPIO_7_PORT;
pin = GPIO_7_PIN;
break;
#endif
#if GPIO_8_EN
case GPIO_8:
GPIO_8_CLKEN();
port = GPIO_8_PORT;
pin = GPIO_8_PIN;
break;
#endif
#if GPIO_9_EN
case GPIO_9:
GPIO_9_CLKEN();
port = GPIO_9_PORT;
pin = GPIO_9_PIN;
break;
#endif
#if GPIO_10_EN
case GPIO_10:
GPIO_10_CLKEN();
port = GPIO_10_PORT;
pin = GPIO_10_PIN;
break;
#endif
#if GPIO_11_EN
case GPIO_11:
GPIO_11_CLKEN();
port = GPIO_11_PORT;
pin = GPIO_11_PIN;
break;
#endif
case GPIO_UNDEFINED:
default:
return -1;
}
port->MODER &= ~(3 << (2 * pin)); /* configure pin as input */
port->PUPDR &= ~(3 << (2 * pin)); /* configure push-pull resistors */
port->PUPDR |= (pushpull << (2 * pin));
return 0; /* everything alright here */
}
int gpio_init_int(gpio_t dev, gpio_pp_t pushpull, gpio_flank_t flank, void (*cb)(void))
{
int res;
uint32_t pin;
res = gpio_init_in(dev, pushpull);
if (res < 0) {
return res;
}
/* enable the SYSCFG clock */
RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN;
switch (dev) {
#if GPIO_0_EN
case GPIO_0:
pin = GPIO_0_PIN;
GPIO_0_EXTI_CFG();
NVIC_SetPriority(GPIO_0_IRQ, GPIO_IRQ_PRIO);
NVIC_EnableIRQ(GPIO_0_IRQ);
break;
#endif
#if GPIO_1_EN
case GPIO_1:
pin = GPIO_1_PIN;
GPIO_1_EXTI_CFG();
NVIC_SetPriority(GPIO_1_IRQ, GPIO_IRQ_PRIO);
NVIC_EnableIRQ(GPIO_1_IRQ);
break;
#endif
#if GPIO_2_EN
case GPIO_2:
pin = GPIO_2_PIN;
GPIO_2_EXTI_CFG();
NVIC_SetPriority(GPIO_2_IRQ, GPIO_IRQ_PRIO);
NVIC_EnableIRQ(GPIO_2_IRQ);
break;
#endif
#if GPIO_3_EN
case GPIO_3:
pin = GPIO_3_PIN;
GPIO_3_EXTI_CFG();
NVIC_SetPriority(GPIO_3_IRQ, GPIO_IRQ_PRIO);
NVIC_EnableIRQ(GPIO_3_IRQ);
break;
#endif
#if GPIO_4_EN
case GPIO_4:
pin = GPIO_4_PIN;
GPIO_4_EXTI_CFG();
NVIC_SetPriority(GPIO_4_IRQ, GPIO_IRQ_PRIO);
NVIC_EnableIRQ(GPIO_4_IRQ);
break;
#endif
#if GPIO_5_EN
case GPIO_5:
pin = GPIO_5_PIN;
GPIO_5_EXTI_CFG();
NVIC_SetPriority(GPIO_5_IRQ, GPIO_IRQ_PRIO);
NVIC_EnableIRQ(GPIO_5_IRQ);
break;
#endif
#if GPIO_6_EN
case GPIO_6:
pin = GPIO_6_PIN;
GPIO_6_EXTI_CFG();
NVIC_SetPriority(GPIO_6_IRQ, GPIO_IRQ_PRIO);
NVIC_EnableIRQ(GPIO_6_IRQ);
break;
#endif
#if GPIO_7_EN
case GPIO_7:
pin = GPIO_7_PIN;
GPIO_7_EXTI_CFG();
NVIC_SetPriority(GPIO_7_IRQ, GPIO_IRQ_PRIO);
NVIC_EnableIRQ(GPIO_7_IRQ);
break;
#endif
#if GPIO_8_EN
case GPIO_8:
pin = GPIO_8_PIN;
GPIO_8_EXTI_CFG();
NVIC_SetPriority(GPIO_8_IRQ, GPIO_IRQ_PRIO);
NVIC_EnableIRQ(GPIO_8_IRQ);
break;
#endif
#if GPIO_9_EN
case GPIO_9:
pin = GPIO_9_PIN;
GPIO_9_EXTI_CFG();
NVIC_SetPriority(GPIO_9_IRQ, GPIO_IRQ_PRIO);
NVIC_EnableIRQ(GPIO_9_IRQ);
break;
#endif
#if GPIO_10_EN
case GPIO_10:
pin = GPIO_10_PIN;
GPIO_10_EXTI_CFG();
NVIC_SetPriority(GPIO_10_IRQ, GPIO_IRQ_PRIO);
NVIC_EnableIRQ(GPIO_10_IRQ);
break;
#endif
#if GPIO_11_EN
case GPIO_11:
pin = GPIO_11_PIN;
GPIO_11_EXTI_CFG();
NVIC_SetPriority(GPIO_11_IRQ, GPIO_IRQ_PRIO);
NVIC_EnableIRQ(GPIO_11_IRQ);
break;
#endif
case GPIO_UNDEFINED:
default:
return -1;
}
/* set callback */
config[dev].cb = cb;
/* configure the active edges */
switch (flank) {
case GPIO_RISING:
EXTI->RTSR |= (1 << pin);
EXTI->FTSR &= ~(1 << pin);
break;
case GPIO_FALLING:
EXTI->RTSR &= ~(1 << pin);
EXTI->FTSR |= (1 << pin);
break;
case GPIO_BOTH:
EXTI->RTSR |= (1 << pin);
EXTI->FTSR |= (1 << pin);
break;
}
/* enable interrupt for EXTI line */
EXTI->IMR |= (1 << pin);
return 0;
}
int gpio_read(gpio_t dev)
{
GPIO_TypeDef *port;
uint32_t pin;
switch (dev) {
#if GPIO_0_EN
case GPIO_0:
port = GPIO_0_PORT;
pin = GPIO_0_PIN;
break;
#endif
#if GPIO_1_EN
case GPIO_1:
port = GPIO_1_PORT;
pin = GPIO_1_PIN;
break;
#endif
#if GPIO_2_EN
case GPIO_2:
port = GPIO_2_PORT;
pin = GPIO_2_PIN;
break;
#endif
#if GPIO_3_EN
case GPIO_3:
port = GPIO_3_PORT;
pin = GPIO_3_PIN;
break;
#endif
#if GPIO_4_EN
case GPIO_4:
port = GPIO_4_PORT;
pin = GPIO_4_PIN;
break;
#endif
#if GPIO_5_EN
case GPIO_5:
port = GPIO_5_PORT;
pin = GPIO_5_PIN;
break;
#endif
#if GPIO_6_EN
case GPIO_6:
port = GPIO_6_PORT;
pin = GPIO_6_PIN;
break;
#endif
#if GPIO_7_EN
case GPIO_7:
port = GPIO_7_PORT;
pin = GPIO_7_PIN;
break;
#endif
#if GPIO_8_EN
case GPIO_8:
port = GPIO_8_PORT;
pin = GPIO_8_PIN;
break;
#endif
#if GPIO_9_EN
case GPIO_9:
port = GPIO_9_PORT;
pin = GPIO_9_PIN;
break;
#endif
#if GPIO_10_EN
case GPIO_10:
port = GPIO_10_PORT;
pin = GPIO_10_PIN;
break;
#endif
#if GPIO_11_EN
case GPIO_11:
port = GPIO_11_PORT;
pin = GPIO_11_PIN;
break;
#endif
case GPIO_UNDEFINED:
default:
return -1;
}
if (port->MODER & (3 << (pin * 2))) { /* if configured as output */
return port->ODR & (1 << pin); /* read output data register */
} else {
return port->IDR & (1 << pin); /* else read input data register */
}
}
int gpio_set(gpio_t dev)
{
switch (dev) {
#if GPIO_0_EN
case GPIO_0:
GPIO_0_PORT->ODR |= (1 << GPIO_0_PIN);
break;
#endif
#if GPIO_1_EN
case GPIO_1:
GPIO_1_PORT->ODR |= (1 << GPIO_1_PIN);
break;
#endif
#if GPIO_2_EN
case GPIO_2:
GPIO_2_PORT->ODR |= (1 << GPIO_2_PIN);
break;
#endif
#if GPIO_3_EN
case GPIO_3:
GPIO_3_PORT->ODR |= (1 << GPIO_3_PIN);
break;
#endif
#if GPIO_4_EN
case GPIO_4:
GPIO_4_PORT->ODR |= (1 << GPIO_4_PIN);
break;
#endif
#if GPIO_5_EN
case GPIO_5:
GPIO_5_PORT->ODR |= (1 << GPIO_5_PIN);
break;
#endif
#if GPIO_6_EN
case GPIO_6:
GPIO_6_PORT->ODR |= (1 << GPIO_6_PIN);
break;
#endif
#if GPIO_7_EN
case GPIO_7:
GPIO_7_PORT->ODR |= (1 << GPIO_7_PIN);
break;
#endif
#if GPIO_8_EN
case GPIO_8:
GPIO_8_PORT->ODR |= (1 << GPIO_8_PIN);
break;
#endif
#if GPIO_9_EN
case GPIO_9:
GPIO_9_PORT->ODR |= (1 << GPIO_9_PIN);
break;
#endif
#if GPIO_10_EN
case GPIO_10:
GPIO_10_PORT->ODR |= (1 << GPIO_10_PIN);
break;
#endif
#if GPIO_11_EN
case GPIO_11:
GPIO_11_PORT->ODR |= (1 << GPIO_11_PIN);
#endif
break;
case GPIO_UNDEFINED:
default:
return -1;
}
return 0;
}
int gpio_clear(gpio_t dev)
{
switch (dev) {
#if GPIO_0_EN
case GPIO_0:
GPIO_0_PORT->ODR &= ~(1 << GPIO_0_PIN);
break;
#endif
#if GPIO_1_EN
case GPIO_1:
GPIO_1_PORT->ODR &= ~(1 << GPIO_1_PIN);
break;
#endif
#if GPIO_2_EN
case GPIO_2:
GPIO_2_PORT->ODR &= ~(1 << GPIO_2_PIN);
break;
#endif
#if GPIO_3_EN
case GPIO_3:
GPIO_3_PORT->ODR &= ~(1 << GPIO_3_PIN);
break;
#endif
#if GPIO_4_EN
case GPIO_4:
GPIO_4_PORT->ODR &= ~(1 << GPIO_4_PIN);
break;
#endif
#if GPIO_5_EN
case GPIO_5:
GPIO_5_PORT->ODR &= ~(1 << GPIO_5_PIN);
break;
#endif
#if GPIO_6_EN
case GPIO_6:
GPIO_6_PORT->ODR &= ~(1 << GPIO_6_PIN);
break;
#endif
#if GPIO_7_EN
case GPIO_7:
GPIO_7_PORT->ODR &= ~(1 << GPIO_7_PIN);
break;
#endif
#if GPIO_8_EN
case GPIO_8:
GPIO_8_PORT->ODR &= ~(1 << GPIO_8_PIN);
break;
#endif
#if GPIO_9_EN
case GPIO_9:
GPIO_9_PORT->ODR &= ~(1 << GPIO_9_PIN);
break;
#endif
#if GPIO_10_EN
case GPIO_10:
GPIO_10_PORT->ODR &= ~(1 << GPIO_10_PIN);
break;
#endif
#if GPIO_11_EN
case GPIO_11:
GPIO_11_PORT->ODR &= ~(1 << GPIO_11_PIN);
break;
#endif
case GPIO_UNDEFINED:
default:
return -1;
}
return 0;
}
int gpio_toggle(gpio_t dev)
{
if (gpio_read(dev)) {
return gpio_clear(dev);
} else {
return gpio_set(dev);
}
}
int gpio_write(gpio_t dev, int value)
{
if (value) {
return gpio_set(dev);
} else {
return gpio_clear(dev);
}
}
static inline void irq_handler(gpio_t dev)
{
config[dev].cb();
if (sched_context_switch_request) {
thread_yield();
}
}
__attribute__((naked))
void isr_exti0(void)
{
ISR_ENTER();
if (EXTI->PR & EXTI_PR_PR0) {
EXTI->PR |= EXTI_PR_PR0; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_0);
}
ISR_EXIT();
}
__attribute__((naked))
void isr_exti1(void)
{
ISR_ENTER();
if (EXTI->PR & EXTI_PR_PR1) {
EXTI->PR |= EXTI_PR_PR1; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_1);
}
ISR_EXIT();
}
__attribute__((naked))
void isr_exti2(void)
{
ISR_ENTER();
if (EXTI->PR & EXTI_PR_PR2) {
EXTI->PR |= EXTI_PR_PR2; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_2);
}
ISR_EXIT();
}
__attribute__((naked))
void isr_exti3(void)
{
ISR_ENTER();
if (EXTI->PR & EXTI_PR_PR3) {
EXTI->PR |= EXTI_PR_PR3; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_3);
}
ISR_EXIT();
}
__attribute__((naked))
void isr_exti4(void)
{
ISR_ENTER();
if (EXTI->PR & EXTI_PR_PR4) {
EXTI->PR |= EXTI_PR_PR4; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_4);
}
ISR_EXIT();
}
__attribute__((naked))
void isr_exti9_5(void)
{
ISR_ENTER();
if (EXTI->PR & EXTI_PR_PR5) {
EXTI->PR |= EXTI_PR_PR5; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_5);
}
if (EXTI->PR & EXTI_PR_PR6) {
EXTI->PR |= EXTI_PR_PR6; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_6);
}
if (EXTI->PR & EXTI_PR_PR7) {
EXTI->PR |= EXTI_PR_PR7; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_7);
}
if (EXTI->PR & EXTI_PR_PR8) {
EXTI->PR |= EXTI_PR_PR8; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_8);
}
if (EXTI->PR & EXTI_PR_PR9) {
EXTI->PR |= EXTI_PR_PR9; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_9);
}
ISR_EXIT();
}
__attribute__((naked))
void isr_exti15_10(void)
{
ISR_ENTER();
if (EXTI->PR & EXTI_PR_PR10) {
EXTI->PR |= EXTI_PR_PR10; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_10);
}
if (EXTI->PR & EXTI_PR_PR11) {
EXTI->PR |= EXTI_PR_PR11; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_11);
}
if (EXTI->PR & EXTI_PR_PR12) {
EXTI->PR |= EXTI_PR_PR12; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_12);
}
if (EXTI->PR & EXTI_PR_PR13) {
EXTI->PR |= EXTI_PR_PR13; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_13);
}
if (EXTI->PR & EXTI_PR_PR14) {
EXTI->PR |= EXTI_PR_PR14; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_14);
}
if (EXTI->PR & EXTI_PR_PR15) {
EXTI->PR |= EXTI_PR_PR15; /* clear status bit by writing a 1 to it */
irq_handler(GPIO_IRQ_15);
}
ISR_EXIT();
}

335
cpu/stm32f4/periph/timer.c Normal file
View File

@ -0,0 +1,335 @@
/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f4
* @{
*
* @file
* @brief Low-level timer driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include <stdlib.h>
#include "cpu.h"
#include "board.h"
#include "sched.h"
#include "thread.h"
#include "periph_conf.h"
#include "periph/timer.h"
/** Unified IRQ handler for all timers */
static inline void irq_handler(tim_t timer, TIM_TypeDef *dev);
/** Type for timer state */
typedef struct {
void (*cb)(int);
} timer_conf_t;
/** Timer state memory */
timer_conf_t config[TIMER_NUMOF];
int timer_init(tim_t dev, unsigned int ticks_per_us, void (*callback)(int))
{
TIM_TypeDef *timer;
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
/* enable timer peripheral clock */
TIMER_0_CLKEN();
/* set timer's IRQ priority */
NVIC_SetPriority(TIMER_0_IRQ_CHAN, TIMER_IRQ_PRIO);
/* select timer */
timer = TIMER_0_DEV;
timer->PSC = TIMER_0_PRESCALER * ticks_per_us;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
/* enable timer peripheral clock */
TIMER_1_CLKEN();
/* set timer's IRQ priority */
NVIC_SetPriority(TIMER_1_IRQ_CHAN, TIMER_IRQ_PRIO);
/* select timer */
timer = TIMER_1_DEV;
timer->PSC = TIMER_0_PRESCALER * ticks_per_us;
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
/* set callback function */
config[dev].cb = callback;
/* set timer to run in counter mode */
timer->CR1 = 0;
timer->CR2 = 0;
/* set auto-reload and prescaler values and load new values */
timer->EGR |= TIM_EGR_UG;
/* enable the timer's interrupt */
timer_irq_enable(dev);
/* start the timer */
timer_start(dev);
return 0;
}
int timer_set(tim_t dev, int channel, unsigned int timeout)
{
int now = timer_read(dev);
return timer_set_absolute(dev, channel, now + timeout - 1);
}
int timer_set_absolute(tim_t dev, int channel, unsigned int value)
{
TIM_TypeDef *timer;
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
timer = TIMER_0_DEV;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
timer = TIMER_1_DEV;
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
switch (channel) {
case 0:
timer->CCR1 = value;
timer->SR &= ~TIM_SR_CC1IF;
timer->DIER |= TIM_DIER_CC1IE;
break;
case 1:
timer->CCR2 = value;
timer->SR &= ~TIM_SR_CC2IF;
timer->DIER |= TIM_DIER_CC2IE;
break;
case 2:
timer->CCR3 = value;
timer->SR &= ~TIM_SR_CC3IF;
timer->DIER |= TIM_DIER_CC3IE;
break;
case 3:
timer->CCR4 = value;
timer->SR &= ~TIM_SR_CC4IF;
timer->DIER |= TIM_DIER_CC4IE;
break;
default:
return -1;
}
return 0;
}
int timer_clear(tim_t dev, int channel)
{
TIM_TypeDef *timer;
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
timer = TIMER_0_DEV;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
timer = TIMER_1_DEV;
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
switch (channel) {
case 0:
timer->DIER &= ~TIM_DIER_CC1IE;
break;
case 1:
timer->DIER &= ~TIM_DIER_CC2IE;
break;
case 2:
timer->DIER &= ~TIM_DIER_CC3IE;
break;
case 3:
timer->DIER &= ~TIM_DIER_CC4IE;
break;
default:
return -1;
}
return 0;
}
unsigned int timer_read(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
return TIMER_0_DEV->CNT;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
return TIMER_1_DEV->CNT;
break;
#endif
case TIMER_UNDEFINED:
default:
return 0;
}
}
void timer_start(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER_0_DEV->CR1 |= TIM_CR1_CEN;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER_1_DEV->CR1 |= TIM_CR1_CEN;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_stop(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER_0_DEV->CR1 &= ~TIM_CR1_CEN;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER_1_DEV->CR1 &= ~TIM_CR1_CEN;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_irq_enable(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
NVIC_EnableIRQ(TIMER_0_IRQ_CHAN);
break;
#endif
#if TIMER_1_EN
case TIMER_1:
NVIC_EnableIRQ(TIMER_1_IRQ_CHAN);
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_irq_disable(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
NVIC_DisableIRQ(TIMER_0_IRQ_CHAN);
break;
#endif
#if TIMER_1_EN
case TIMER_1:
NVIC_DisableIRQ(TIMER_1_IRQ_CHAN);
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_reset(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER_0_DEV->CNT = 0;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER_1_DEV->CNT = 0;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
__attribute__ ((naked)) void TIMER_0_ISR(void)
{
ISR_ENTER();
irq_handler(TIMER_0, TIMER_0_DEV);
ISR_EXIT();
}
__attribute__ ((naked)) void TIMER_1_ISR(void)
{
ISR_ENTER();
irq_handler(TIMER_1, TIMER_1_DEV);
ISR_EXIT();
}
static inline void irq_handler(tim_t timer, TIM_TypeDef *dev)
{
if (dev->SR & TIM_SR_CC1IF) {
dev->DIER &= ~TIM_DIER_CC1IE;
dev->SR &= ~TIM_SR_CC1IF;
config[timer].cb(0);
}
else if (dev->SR & TIM_SR_CC2IF) {
dev->DIER &= ~TIM_DIER_CC2IE;
dev->SR &= ~TIM_SR_CC2IF;
config[timer].cb(1);
}
else if (dev->SR & TIM_SR_CC3IF) {
dev->DIER &= ~TIM_DIER_CC3IE;
dev->SR &= ~TIM_SR_CC3IF;
config[timer].cb(2);
}
else if (dev->SR & TIM_SR_CC4IF) {
dev->DIER &= ~TIM_DIER_CC4IE;
dev->SR &= ~TIM_SR_CC4IF;
config[timer].cb(3);
}
if (sched_context_switch_request) {
thread_yield();
}
}

313
cpu/stm32f4/periph/uart.c Normal file
View File

@ -0,0 +1,313 @@
/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f4
* @{
*
* @file
* @brief Low-level UART driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include <math.h>
#include "cpu.h"
#include "thread.h"
#include "sched.h"
#include "periph_conf.h"
#include "periph/uart.h"
/**
* @brief Each UART device has to store two callbacks.
*/
typedef struct {
void (*rx_cb)(char);
void (*tx_cb)(void);
} uart_conf_t;
/**
* @brief Unified interrupt handler for all UART devices
*
* @param uartnum the number of the UART that triggered the ISR
* @param uart the UART device that triggered the ISR
*/
static inline void irq_handler(uart_t uartnum, USART_TypeDef *uart);
/**
* @brief Allocate memory to store the callback functions.
*/
static uart_conf_t config[UART_NUMOF];
int uart_init(uart_t uart, uint32_t baudrate, void (*rx_cb)(char), void (*tx_cb)(void))
{
/* do basic initialization */
int res = uart_init_blocking(uart, baudrate);
if (res < 0) {
return res;
}
/* remember callback addresses */
config[uart].rx_cb = rx_cb;
config[uart].tx_cb = tx_cb;
/* enable receive interrupt */
switch (uart) {
#if UART_0_EN
case UART_0:
NVIC_SetPriority(UART_0_IRQ_CHAN, UART_IRQ_PRIO);
NVIC_EnableIRQ(UART_0_IRQ_CHAN);
UART_0_DEV->CR1 |= USART_CR1_RXNEIE;
break;
#endif
#if UART_1_EN
case UART_1:
NVIC_SetPriority(UART_1_IRQ_CHAN, UART_IRQ_PRIO);
NVIC_EnableIRQ(UART_1_IRQ_CHAN);
UART_1_DEV->CR1 |= USART_CR1_RXNEIE;
break;
#endif
case UART_UNDEFINED:
default:
return -2;
break;
}
return 0;
}
int uart_init_blocking(uart_t uart, uint32_t baudrate)
{
USART_TypeDef *dev;
GPIO_TypeDef *port;
uint32_t tx_pin;
uint32_t rx_pin;
uint8_t af;
float clk;
float divider;
uint16_t mantissa;
uint8_t fraction;
switch (uart) {
#if UART_0_EN
case UART_0:
dev = UART_0_DEV;
port = UART_0_PORT;
clk = UART_0_CLK;
tx_pin = UART_0_TX_PIN;
rx_pin = UART_0_RX_PIN;
af = UART_0_AF;
UART_0_CLKEN();
UART_0_PORT_CLKEN();
break;
#endif
#if UART_1_EN
case UART_1:
dev = UART_1_DEV;
port = UART_1_PORT;
clk = UART_1_CLK;
tx_pin = UART_1_TX_PIN;
rx_pin = UART_1_RX_PIN;
af = UART_1_AF;
UART_1_CLKEN();
UART_1_PORT_CLKEN();
break;
#endif
case UART_UNDEFINED:
default:
return -1;
}
/* configure RX and TX pins, set pin to use alternative function mode */
port->MODER &= ~(3 << (rx_pin * 2) | 3 << (tx_pin * 2));
port->MODER |= 2 << (rx_pin * 2) | 2 << (tx_pin * 2);
/* and assign alternative function */
if (rx_pin < 8) {
port->AFR[0] &= ~(0xf << (rx_pin * 4));
port->AFR[0] |= af << (rx_pin * 4);
}
else {
port->AFR[1] &= ~(0xf << ((rx_pin - 8) * 4));
port->AFR[1] |= af << ((rx_pin - 8) * 4);
}
if (tx_pin < 8) {
port->AFR[0] &= ~(0xf << (tx_pin * 4));
port->AFR[0] |= af << (tx_pin * 4);
}
else {
port->AFR[1] &= ~(0xf << ((tx_pin - 8) * 4));
port->AFR[1] |= af << ((tx_pin - 8) * 4);
}
/* configure UART to mode 8N1 with given baudrate */
divider = clk / (16 * baudrate);
mantissa = (uint16_t)divider;
fraction = (uint8_t)((divider - mantissa) * 16);
dev->BRR = ((mantissa & 0x0fff) << 4) | (0x0f & fraction);
/* enable receive and transmit mode */
dev->CR3 = 0;
dev->CR2 = 0;
dev->CR1 = USART_CR1_UE | USART_CR1_TE | USART_CR1_RE;
return 0;
}
void uart_tx_begin(uart_t uart)
{
switch (uart) {
#if UART_0_EN
case UART_0:
UART_0_DEV->CR1 |= USART_CR1_TXEIE;
break;
#endif
#if UART_1_EN
case UART_1:
UART_1_DEV->CR1 |= USART_CR1_TXEIE;
break;
#endif
case UART_UNDEFINED:
default:
break;
}
}
void uart_tx_end(uart_t uart)
{
switch (uart) {
#if UART_0_EN
case UART_0:
UART_0_DEV->CR1 &= ~USART_CR1_TXEIE;
break;
#endif
#if UART_1_EN
case UART_1:
UART_1_DEV->CR1 &= ~USART_CR1_TXEIE;
break;
#endif
case UART_UNDEFINED:
default:
break;
}
}
int uart_write(uart_t uart, char data)
{
USART_TypeDef *dev;
switch (uart) {
#if UART_0_EN
case UART_0:
dev = UART_0_DEV;
break;
#endif
#if UART_1_EN
case UART_1:
dev = UART_1_DEV;
break;
#endif
case UART_UNDEFINED:
default:
return -2;
break;
}
if (dev->SR & USART_SR_TXE) {
dev->DR = (uint8_t)data;
}
return 0;
}
int uart_read_blocking(uart_t uart, char *data)
{
USART_TypeDef *dev;
switch (uart) {
#if UART_0_EN
case UART_0:
dev = UART_0_DEV;
break;
#endif
#if UART_1_EN
case UART_1:
dev = UART_1_DEV;
break;
#endif
case UART_UNDEFINED:
default:
return -2;
break;
}
while (!(dev->SR & USART_SR_RXNE));
*data = (char)dev->DR;
return 1;
}
int uart_write_blocking(uart_t uart, char data)
{
USART_TypeDef *dev;
switch (uart) {
#if UART_0_EN
case UART_0:
dev = UART_0_DEV;
break;
#endif
#if UART_1_EN
case UART_1:
dev = UART_1_DEV;
break;
#endif
case UART_UNDEFINED:
default:
return -2;
break;
}
while (!(dev->SR & USART_SR_TXE));
dev->DR = (uint8_t)data;
return 1;
}
__attribute__((naked))
void UART_0_ISR(void)
{
ISR_ENTER();
irq_handler(UART_0, UART_0_DEV);
ISR_EXIT();
}
__attribute__((naked))
void UART_1_ISR(void)
{
ISR_ENTER();
irq_handler(UART_1, UART_1_DEV);
ISR_EXIT();
}
static inline void irq_handler(uint8_t uartnum, USART_TypeDef *dev)
{
if (dev->SR & USART_SR_RXNE) {
char data = (char)dev->DR;
config[uartnum].rx_cb(data);
}
else if (dev->SR & USART_SR_TXE) {
config[uartnum].tx_cb();
}
if (sched_context_switch_request) {
thread_yield();
}
}

34
cpu/stm32f4/reboot_arch.c Normal file
View File

@ -0,0 +1,34 @@
/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f4
* @{
*
* @file
* @brief Implementation of the kernels reboot interface
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include <stdio.h>
#include "arch/reboot_arch.h"
#include "cpu.h"
int reboot_arch(int mode)
{
printf("Going into reboot, mode %i\n", mode);
NVIC_SystemReset();
return 0;
}

307
cpu/stm32f4/startup.c Normal file
View File

@ -0,0 +1,307 @@
/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f4
* @{
*
* @file
* @brief Startup code and interrupt vector definition
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include <stdint.h>
/**
* memory markers as defined in the linker script
*/
extern uint32_t _sfixed;
extern uint32_t _efixed;
extern uint32_t _etext;
extern uint32_t _srelocate;
extern uint32_t _erelocate;
extern uint32_t _szero;
extern uint32_t _ezero;
extern uint32_t _sstack;
extern uint32_t _estack;
/**
* @brief functions for initializing the board, std-lib and kernel
*/
extern void board_init(void);
extern void kernel_init(void);
extern void __libc_init_array(void);
/**
* @brief This function is the entry point after a system reset
*
* After a system reset, the following steps are necessary and carried out:
* 1. load data section from flash to ram
* 2. overwrite uninitialized data section (BSS) with zeros
* 3. initialize the newlib
* 4. initialize the board (sync clock, setup std-IO)
* 5. initialize and start RIOTs kernel
*/
void reset_handler(void)
{
uint32_t *dst;
uint32_t *src = &_etext;
/* load data section from flash to ram */
for (dst = &_srelocate; dst < &_erelocate; ) {
*(dst++) = *(src++);
}
/* default bss section to zero */
for (dst = &_szero; dst < &_ezero; ) {
*(dst++) = 0;
}
/* initialize the board and startup the kernel */
board_init();
/* initialize std-c library (this should be done after board_init) */
__libc_init_array();
/* startup the kernel */
kernel_init();
}
/**
* @brief Default handler is called in case no interrupt handler was defined
*/
void dummy_handler(void)
{
while (1) {asm ("nop");}
}
void isr_nmi(void)
{
while (1) {asm ("nop");}
}
void isr_mem_manage(void)
{
while (1) {asm ("nop");}
}
void isr_debug_mon(void)
{
while (1) {asm ("nop");}
}
void isr_hard_fault(void)
{
while (1) {asm ("nop");}
}
void isr_bus_fault(void)
{
while (1) {asm ("nop");}
}
void isr_usage_fault(void)
{
while (1) {asm ("nop");}
}
/* Cortex-M specific interrupt vectors */
void isr_svc(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_pendsv(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_systick(void) __attribute__ ((weak, alias("dummy_handler")));
/* STM32F4 specific interrupt vector */
void isr_wwdg(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_pvd(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tamp_stamp(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_rtc_wkup(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_flash(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_rcc(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_exti0(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_exti1(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_exti2(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_exti3(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_exti4(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma1_stream0(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma1_stream1(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma1_stream2(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma1_stream3(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma1_stream4(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma1_stream5(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma1_stream6(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_adc(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_can1_tx(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_can1_rx0(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_can1_rx1(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_can1_sce(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_exti9_5(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tim1_brk_tim9(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tim1_up_tim10(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tim1_trg_com_tim11(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tim1_cc(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tim2(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tim3(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tim4(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_i2c1_ev(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_i2c1_er(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_i2c2_ev(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_i2c2_er(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_spi1(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_spi2(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_usart1(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_usart2(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_usart3(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_exti15_10(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_rtc_alarm(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_otg_fs_wkup(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tim8_brk_tim12(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tim8_up_tim13(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tim8_trg_com_tim14(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tim8_cc(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma1_stream7(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_fsmc(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_sdio(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tim5(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_spi3(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_uart4(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_uart5(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tim6_dac(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_tim7(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma2_stream0(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma2_stream1(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma2_stream2(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma2_stream3(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma2_stream4(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_eth(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_eth_wkup(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_can2_tx(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_can2_rx0(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_can2_rx1(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_can2_sce(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_otg_fs(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma2_stream5(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma2_stream6(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dma2_stream7(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_usart6(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_i2c3_ev(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_i2c3_er(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_otg_hs_ep1_out(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_otg_hs_ep1_in(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_otg_hs_wkup(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_otg_hs(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_dcmi(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_cryp(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_hash_rng(void) __attribute__ ((weak, alias("dummy_handler")));
void isr_fpu(void) __attribute__ ((weak, alias("dummy_handler")));
/* interrupt vector table */
__attribute__ ((section(".vectors")))
const void *interrupt_vector[] = {
/* Stack pointer */
(void*) (&_estack), /* pointer to the top of the empty stack */
/* Cortex-M4 handlers */
(void*) reset_handler, /* entry point of the program */
(void*) isr_nmi, /* non maskable interrupt handler */
(void*) isr_hard_fault, /* if you end up here its not good */
(void*) isr_mem_manage, /* memory controller interrupt */
(void*) isr_bus_fault, /* also not good to end up here */
(void*) isr_usage_fault, /* autsch */
(void*) (0UL), /* Reserved */
(void*) (0UL), /* Reserved */
(void*) (0UL), /* Reserved */
(void*) (0UL), /* Reserved */
(void*) isr_svc, /* system call interrupt */
(void*) isr_debug_mon, /* debug interrupt */
(void*) (0UL), /* Reserved */
(void*) isr_pendsv, /* pendSV interrupt, used for task switching in RIOT */
(void*) isr_systick, /* SysTick interrupt, not used in RIOT */
/* STM specific peripheral handlers */
(void*) isr_wwdg, /* Window WatchDog */
(void*) isr_pvd, /* PVD through EXTI Line detection */
(void*) isr_tamp_stamp, /* Tamper and TimeStamps through the EXTI line */
(void*) isr_rtc_wkup, /* RTC Wakeup through the EXTI line */
(void*) isr_flash, /* FLASH */
(void*) isr_rcc, /* RCC */
(void*) isr_exti0, /* EXTI Line0 */
(void*) isr_exti1, /* EXTI Line1 */
(void*) isr_exti2, /* EXTI Line2 */
(void*) isr_exti3, /* EXTI Line3 */
(void*) isr_exti4, /* EXTI Line4 */
(void*) isr_dma1_stream0, /* DMA1 Stream 0 */
(void*) isr_dma1_stream1, /* DMA1 Stream 1 */
(void*) isr_dma1_stream2, /* DMA1 Stream 2 */
(void*) isr_dma1_stream3, /* DMA1 Stream 3 */
(void*) isr_dma1_stream4, /* DMA1 Stream 4 */
(void*) isr_dma1_stream5, /* DMA1 Stream 5 */
(void*) isr_dma1_stream6, /* DMA1 Stream 6 */
(void*) isr_adc, /* ADC1, ADC2 and ADC3s */
(void*) isr_can1_tx, /* CAN1 TX */
(void*) isr_can1_rx0, /* CAN1 RX0 */
(void*) isr_can1_rx1, /* CAN1 RX1 */
(void*) isr_can1_sce, /* CAN1 SCE */
(void*) isr_exti9_5, /* External Line[9:5]s */
(void*) isr_tim1_brk_tim9, /* TIM1 Break and TIM9 */
(void*) isr_tim1_up_tim10, /* TIM1 Update and TIM10 */
(void*) isr_tim1_trg_com_tim11, /* TIM1 Trigger and Commutation and TIM11 */
(void*) isr_tim1_cc, /* TIM1 Capture Compare */
(void*) isr_tim2, /* TIM2 */
(void*) isr_tim3, /* TIM3 */
(void*) isr_tim4, /* TIM4 */
(void*) isr_i2c1_ev, /* I2C1 Event */
(void*) isr_i2c1_er, /* I2C1 Error */
(void*) isr_i2c2_ev, /* I2C2 Event */
(void*) isr_i2c2_er, /* I2C2 Error */
(void*) isr_spi1, /* SPI1 */
(void*) isr_spi2, /* SPI2 */
(void*) isr_usart1, /* USART1 */
(void*) isr_usart2, /* USART2 */
(void*) isr_usart3, /* USART3 */
(void*) isr_exti15_10, /* External Line[15:10]s */
(void*) isr_rtc_alarm, /* RTC Alarm (A and B) through EXTI Line */
(void*) isr_otg_fs_wkup, /* USB OTG FS Wakeup through EXTI line */
(void*) isr_tim8_brk_tim12, /* TIM8 Break and TIM12 */
(void*) isr_tim8_up_tim13, /* TIM8 Update and TIM13 */
(void*) isr_tim8_trg_com_tim14, /* TIM8 Trigger and Commutation and TIM14 */
(void*) isr_tim8_cc, /* TIM8 Capture Compare */
(void*) isr_dma1_stream7, /* DMA1 Stream7 */
(void*) isr_fsmc, /* FSMC */
(void*) isr_sdio, /* SDIO */
(void*) isr_tim5, /* TIM5 */
(void*) isr_spi3, /* SPI3 */
(void*) isr_uart4, /* UART4 */
(void*) isr_uart5, /* UART5 */
(void*) isr_tim6_dac, /* TIM6 and DAC1&2 underrun errors */
(void*) isr_tim7, /* TIM7 */
(void*) isr_dma2_stream0, /* DMA2 Stream 0 */
(void*) isr_dma2_stream1, /* DMA2 Stream 1 */
(void*) isr_dma2_stream2, /* DMA2 Stream 2 */
(void*) isr_dma2_stream3, /* DMA2 Stream 3 */
(void*) isr_dma2_stream4, /* DMA2 Stream 4 */
(void*) isr_eth, /* Ethernet */
(void*) isr_eth_wkup, /* Ethernet Wakeup through EXTI line */
(void*) isr_can2_tx, /* CAN2 TX */
(void*) isr_can2_rx0, /* CAN2 RX0 */
(void*) isr_can2_rx1, /* CAN2 RX1 */
(void*) isr_can2_sce, /* CAN2 SCE */
(void*) isr_otg_fs, /* USB OTG FS */
(void*) isr_dma2_stream5, /* DMA2 Stream 5 */
(void*) isr_dma2_stream6, /* DMA2 Stream 6 */
(void*) isr_dma2_stream7, /* DMA2 Stream 7 */
(void*) isr_usart6, /* USART6 */
(void*) isr_i2c3_ev, /* I2C3 event */
(void*) isr_i2c3_er, /* I2C3 error */
(void*) isr_otg_hs_ep1_out, /* USB OTG HS End Point 1 Out */
(void*) isr_otg_hs_ep1_in, /* USB OTG HS End Point 1 In */
(void*) isr_otg_hs_wkup, /* USB OTG HS Wakeup through EXTI */
(void*) isr_otg_hs, /* USB OTG HS */
(void*) isr_dcmi, /* DCMI */
(void*) isr_cryp, /* CRYP crypto */
(void*) isr_hash_rng, /* Hash and Rng */
(void*) isr_fpu, /* FPU */
};

View File

@ -0,0 +1,144 @@
/* ----------------------------------------------------------------------------
* SAM Software Package License
* ----------------------------------------------------------------------------
* Copyright (c) 2012, Atmel Corporation
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following condition is met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the disclaimer below.
*
* Atmel's name may not be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* ----------------------------------------------------------------------------
*/
OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
OUTPUT_ARCH(arm)
SEARCH_DIR(.)
/* Memory Spaces Definitions */
MEMORY
{
rom (rx) : ORIGIN = 0x08000000, LENGTH = 1024K
ram (rwx) : ORIGIN = 0x20000000, LENGTH = 128K
ccmram (rwx): ORIGIN = 0x10000000, LENGTH = 64K
}
/* The stack size used by the application. NOTE: you need to adjust */
STACK_SIZE = DEFINED(STACK_SIZE) ? STACK_SIZE : 0x2000 ;
/* Section Definitions */
SECTIONS
{
.text :
{
. = ALIGN(4);
_sfixed = .;
KEEP(*(.vectors .vectors.*))
*(.text .text.* .gnu.linkonce.t.*)
*(.glue_7t) *(.glue_7)
*(.rodata .rodata* .gnu.linkonce.r.*)
*(.ARM.extab* .gnu.linkonce.armextab.*)
/* Support C constructors, and C destructors in both user code
and the C library. This also provides support for C++ code. */
. = ALIGN(4);
KEEP(*(.init))
. = ALIGN(4);
__preinit_array_start = .;
KEEP (*(.preinit_array))
__preinit_array_end = .;
. = ALIGN(4);
__init_array_start = .;
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
__init_array_end = .;
. = ALIGN(0x4);
KEEP (*crtbegin.o(.ctors))
KEEP (*(EXCLUDE_FILE (*crtend.o) .ctors))
KEEP (*(SORT(.ctors.*)))
KEEP (*crtend.o(.ctors))
. = ALIGN(4);
KEEP(*(.fini))
. = ALIGN(4);
__fini_array_start = .;
KEEP (*(.fini_array))
KEEP (*(SORT(.fini_array.*)))
__fini_array_end = .;
KEEP (*crtbegin.o(.dtors))
KEEP (*(EXCLUDE_FILE (*crtend.o) .dtors))
KEEP (*(SORT(.dtors.*)))
KEEP (*crtend.o(.dtors))
. = ALIGN(4);
_efixed = .; /* End of text section */
} > rom
/* .ARM.exidx is sorted, so has to go in its own output section. */
PROVIDE_HIDDEN (__exidx_start = .);
.ARM.exidx :
{
*(.ARM.exidx* .gnu.linkonce.armexidx.*)
} > rom
PROVIDE_HIDDEN (__exidx_end = .);
. = ALIGN(4);
_etext = .;
.relocate : AT (_etext)
{
. = ALIGN(4);
_srelocate = .;
*(.ramfunc .ramfunc.*);
*(.data .data.*);
. = ALIGN(4);
_erelocate = .;
} > ram
/* .bss section which is used for uninitialized data */
.bss (NOLOAD) :
{
. = ALIGN(4);
_sbss = . ;
_szero = .;
*(.bss .bss.*)
*(COMMON)
. = ALIGN(4);
_ebss = . ;
_ezero = .;
} > ram
/* stack section */
.stack (NOLOAD):
{
. = ALIGN(8);
_sstack = .;
. = . + STACK_SIZE;
. = ALIGN(8);
_estack = .;
} > ram
. = ALIGN(4);
_end = . ;
}

271
cpu/stm32f4/syscalls.c Normal file
View File

@ -0,0 +1,271 @@
/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f4
* @{
*
* @file
* @brief NewLib system call implementations for STM32F4
*
* @author Michael Baar <michael.baar@fu-berlin.de>
* @author Stefan Pfeiffer <pfeiffer@inf.fu-berlin.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/unistd.h>
#include <stdint.h>
#include "board.h"
#include "thread.h"
#include "kernel.h"
#include "irq.h"
#include "periph/uart.h"
/**
* manage the heap
*/
extern uint32_t _end; /* address of last used memory cell */
caddr_t heap_top = (caddr_t)&_end + 4;
/**
* @brief Initialize NewLib, called by __libc_init_array() from the startup script
*/
void _init(void)
{
uart_init_blocking(STDIO, STDIO_BAUDRATE);
}
/**
* @brief Free resources on NewLib de-initialization, not used for RIOT
*/
void _fini(void)
{
/* nothing to do here */
}
/**
* @brief Exit a program without cleaning up files
*
* If your system doesn't provide this, it is best to avoid linking with subroutines that
* require it (exit, system).
*
* @param n the exit code, 0 for all OK, >0 for not OK
*/
void _exit(int n)
{
printf("#! exit %i: resetting\n", n);
NVIC_SystemReset();
while(1);
}
/**
* @brief Allocate memory from the heap.
*
* The current heap implementation is very rudimentary, it is only able to allocate
* memory. But it does not
* - check if the returned address is valid (no check if the memory very exists)
* - have any means to free memory again
*
* TODO: check if the requested memory is really available
*
* @return [description]
*/
caddr_t _sbrk_r(struct _reent *r, size_t incr)
{
unsigned int state = disableIRQ();
caddr_t res = heap_top;
heap_top += incr;
restoreIRQ(state);
return res;
}
/**
* @brief Get the process-ID of the current thread
*
* @return the process ID of the current thread
*/
int _getpid(void)
{
return sched_active_thread->pid;
}
/**
* @brief Send a signal to a given thread
*
* @param r TODO
* @param pid TODO
* @param sig TODO
*
* @return TODO
*/
int _kill_r(struct _reent *r, int pid, int sig)
{
r->_errno = ESRCH; /* not implemented yet */
return -1;
}
/**
* @brief Open a file
*
* @param r TODO
* @param name TODO
* @param mode TODO
*
* @return TODO
*/
int _open_r(struct _reent *r, const char *name, int mode)
{
r->_errno = ENODEV; /* not implemented yet */
return -1;
}
/**
* @brief Read from a file
*
* All input is read from UART_0. The function will block until a byte is actually read.
*
* Note: the read function does not buffer - data will be lost if the function is not
* called fast enough.
*
* TODO: implement more sophisticated read call.
*
* @param r TODO
* @param fd TODO
* @param buffer TODO
* @param int TODO
*
* @return TODO
*/
int _read_r(struct _reent *r, int fd, void *buffer, unsigned int count)
{
char c;
char *buff = (char*)buffer;
uart_read_blocking(STDIO, &c);
buff[0] = c;
return 1;
}
/**
* @brief Write characters to a file
*
* All output is currently directed to UART_0, independent of the given file descriptor.
* The write call will further block until the byte is actually written to the UART.
*
* TODO: implement more sophisticated write call.
*
* @param r TODO
* @param fd TODO
* @param data TODO
* @param int TODO
*
* @return TODO
*/
int _write_r(struct _reent *r, int fd, const void *data, unsigned int count)
{
char *c = (char*)data;
for (int i = 0; i < count; i++) {
uart_write_blocking(STDIO, c[i]);
}
return count;
}
/**
* @brief Close a file
*
* @param r TODO
* @param fd TODO
*
* @return TODO
*/
int _close_r(struct _reent *r, int fd)
{
r->_errno = ENODEV; /* not implemented yet */
return -1;
}
/**
* @brief Set position in a file
*
* @param r TODO
* @param fd TODO
* @param pos TODO
* @param dir TODO
*
* @return TODO
*/
_off_t _lseek_r(struct _reent *r, int fd, _off_t pos, int dir)
{
r->_errno = ENODEV; /* not implemented yet */
return -1;
}
/**
* @brief Status of an open file
*
* @param r TODO
* @param fd TODO
* @param stat TODO
*
* @return TODO
*/
int _fstat_r(struct _reent *r, int fd, struct stat * st)
{
r->_errno = ENODEV; /* not implemented yet */
return -1;
}
/**
* @brief Status of a file (by name)
*
* @param r TODO
* @param name TODO
* @param stat TODO
*
* @return TODO
*/
int _stat_r(struct _reent *r, char *name, struct stat *st)
{
r->_errno = ENODEV; /* not implemented yet */
return -1;
}
/**
* @brief Query whether output stream is a terminal
*
* @param r TODO
* @param fd TODO
*
* @return TODO
*/
int _isatty_r(struct _reent *r, int fd)
{
r->_errno = 0;
return -1;
}
/**
* @brief Remove a file's directory entry
*
* @param r TODO
* @param path TODO
*
* @return TODO
*/
int _unlink_r(struct _reent *r, char* path)
{
r->_errno = ENODEV; /* not implemented yet */
return -1;
}