1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-12-24 14:03:55 +01:00

Merge pull request #21230 from crasbe/pr/stm32f0g0c0_adc

cpu/stm32{f0,g0,c0}: fix ADC initialization sequence
This commit is contained in:
Marian Buschsieweke 2025-04-02 12:56:35 +00:00 committed by GitHub
commit b1932dd1f5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -24,6 +24,8 @@
#include "periph/adc.h"
#include "periph/vbat.h"
#include "busy_wait.h"
/**
* @brief Default VBAT undefined value
*/
@ -31,6 +33,13 @@
#define VBAT_ADC ADC_UNDEF
#endif
/* ADC register CR bits with HW property "rs":
* Software can read as well as set this bit. We want to avoid writing a status
* bit with a Read-Modify-Write cycle and accidentally setting other status
* bits as well. Writing '0' has no effect on the bit value. */
#define ADC_CR_BITS_PROPERTY_RS (ADC_CR_ADCAL | ADC_CR_ADSTP | ADC_CR_ADSTART \
| ADC_CR_ADDIS | ADC_CR_ADEN)
/**
* @brief Allocate lock for the ADC device
*
@ -60,6 +69,53 @@ static inline void done(void)
mutex_unlock(&lock);
}
static int _enable_adc(void)
{
/* check if the ADC is not already enabled */
if (ADC1->CR & ADC_CR_ADEN) {
return 0;
}
/* ensure the prerequisites are right */
if (ADC1->CR & (ADC_CR_ADCAL | ADC_CR_ADSTP | ADC_CR_ADSTART | ADC_CR_ADDIS)) {
return -1;
}
/* enable the ADC and wait for the READY flag */
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADEN;
while (!(ADC1->ISR & ADC_ISR_ADRDY)) {
/* the calibration logic can reset the ADEN flag, so keep enabling it */
if (!(ADC1->CR & ADC_CR_ADEN)) {
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADEN;
}
}
return 0;
}
static int _disable_adc(void)
{
/* check if disable is going on or ADC is disabled already */
if ((ADC1->CR & ADC_CR_ADDIS) || !(ADC1->CR & ADC_CR_ADEN)) {
while (ADC1->CR & ADC_CR_ADDIS) {}
return 0;
}
/* make sure no conversion is going on and stop it if it is */
if (ADC1->CR & ADC_CR_ADSTART) {
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADSTP;
while (ADC1->CR & ADC_CR_ADSTP) {}
}
/* disable the ADC and wait until is is disabled*/
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADDIS;
while (!(ADC1->CR & ADC_CR_ADEN)) {}
return 0;
}
int adc_init(adc_t line)
{
/* make sure the given line is valid */
@ -67,29 +123,73 @@ int adc_init(adc_t line)
return -1;
}
/* lock and power on the device */
/* lock and power on the device, but keep it disabled */
prep();
_disable_adc();
/* configure the pin */
if (adc_config[line].pin != GPIO_UNDEF) {
gpio_init_analog(adc_config[line].pin);
}
/* reset configuration */
ADC1->CFGR2 = 0;
/* init ADC only if it wasn't already initialized. Check a register
* set by the initialization which has a reset value of 0 */
if (ADC1->SMPR == 0) {
/* reset configuration, including ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | ADC_CFGR1_AUTOFF */
ADC1->CFGR1 = 0;
ADC1->CFGR2 = 0;
/* Calibration procedure according to:
* - RM0360 section 12.3.2 for the STM32F0
* - RM0454 section 14.3.3 for the STM32G0
* - RM0490 section 16.4.3 for the STM32C0 */
/* only enable the ADC voltage regulator if the chip has one (STM32F0 does not) */
#if defined(ADC_CR_ADVREGEN)
/* calibrate ADC, per RM0454 section 14.3.3 */
/* 1. ensure ADEN=0, ADVREGEN=1, DMAEN=0 */
ADC1->CR |= ADC_CR_ADVREGEN;
ADC1->CR &= ~(ADC_CR_ADCAL | ADC_CR_ADEN );
ADC1->CFGR1 &= ~(ADC_CFGR1_DMAEN);
/* 2. Set ADCAL=1 */
ADC1->CR |= ADC_CR_ADCAL;
/* 3. Wait for ADCAL=0 (or EOCAL=1) */
while ((ADC1->ISR & ADC_ISR_EOCAL)) {}
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADVREGEN;
/* wait for t_ADCVREG_STUP = 20us with some headroom due to busy_wait_us being inaccurate */
busy_wait_us(100);
#endif
/* enable device */
ADC1->CR = ADC_CR_ADEN;
/* configure sampling time to save value */
ADC1->SMPR = 0x3; /* 28.5 ADC clock cycles */
/* the STM32C0 requires an averaging of eight calibration values */
#if defined(CPU_FAM_STM32C0) || defined(CPU_FAM_STM32G0)
uint32_t calfact = 0;
for (uint32_t i = 8; i > 0; i--) {
/* perform a calibration and wait for the flag to clear */
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADCAL;
while (ADC1->CR & ADC_CR_ADCAL) {}
calfact += ADC1->CALFACT;
}
/* round up to the nearest integer */
calfact = (calfact + 4) / 8;
/* enable the ADC to write the calibration factor and wait before writing and disabling */
if (_enable_adc() == -1) {
return -1;
}
busy_wait_us(100);
/* apply the calibration factor and mask it in case it is bigger than 0x7F */
ADC1->CALFACT = calfact & ADC_CALFACT_CALFACT;
_disable_adc();
/* configure sampling time to a safe value */
ADC1->SMPR = ADC_SMPR_SMP1_2 | ADC_SMPR_SMP1_0; /* 39.5 ADC clock cycles */
#else
/* perform a calibration and wait for the flag to clear */
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADCAL;
while (ADC1->CR & ADC_CR_ADCAL) {}
/* configure sampling time to safe value */
ADC1->SMPR = ADC_SMPR_SMP_1 | ADC_SMPR1_SMPR_0; /* 28.5 ADC clock cycles */
#endif
}
/* power off an release device for now */
done();
@ -107,24 +207,41 @@ int32_t adc_sample(adc_t line, adc_res_t res)
/* lock and power on the ADC device */
prep();
/* check if this is the VBAT line */
if (IS_USED(MODULE_PERIPH_VBAT) && line == VBAT_ADC) {
vbat_enable();
}
/* set resolution and channel */
ADC1->CFGR1 = res;
ADC1->CHSELR = (1 << adc_config[line].chan);
/* check if the ADC was enabled successfully */
if (_enable_adc() == -1) {
done();
return -1;
}
/* start conversion and wait for results */
ADC1->CR |= ADC_CR_ADSTART;
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADSTART;
while (!(ADC1->ISR & ADC_ISR_EOC)) {}
/* read result */
sample = (int)ADC1->DR;
/* check if this is the VBAT line */
if (IS_USED(MODULE_PERIPH_VBAT) && line == VBAT_ADC) {
vbat_disable();
}
/* unlock and power off device again */
/* disable, unlock and power off device again */
int ret = _disable_adc();
done();
return sample;
if (ret == -1) {
return -1;
} else {
return sample;
}
}