In thread_state_to_string() it is not checked whether state is within
the valid range, so that in the event of an error an invalid memory
address is returned, which in turn leads to further invalid memory
accesses when the string is output. thread_state_to_string() is used
in particular by ps(). In the case of a corrupt thread context, which
often occurred in my case due to the stack size being too small,
thread_state_to_string() is called with an invalid status.
In thread_wakeup() the status of the function to be woken up is
incorrectly set to TASK_RUNNING. Instead the task should be set
to STATUS_PENDING here, as only sched_run() is allowed to set a
task to TASK_RUNNING.
This changes the API of xfa from
XFA(array_name, prio) type element_name = INITIALIZER;
to
XFA(type, array_name, prio) element_name = INITIALIZER;
this allows forcing natural alignment of the type, fixing failing tests
on `native64`.
Using `sched_switch()` in `mutex_unlock()` can result in crashes when
`mutex_unlock()` is called from IRQ context. This however is a common
pattern in RIOT to wake up a thread from IRQ. The reason for the crash
is that `sched_switch()` assumes `thread_get_active()` to always return
a non-`NULL` value. But when thread-less idle is used, no thread may be
active after the last runnable thread exited. Using
`thread_yield_higher()` instead solves the issue, as
`thread_yield_higher()` is safe to call from IRQ context without an
active thread.
This fixes https://github.com/RIOT-OS/RIOT/issues/20812
The dark magic used used in thread_measure_stack_free() is frowned upon
by valgrind. E.g. valgrind may deduce (by monitoring the stack pointer)
that a specific value was at some point allocated on the stack, but has
gone out of scope. When that value is now read again to estimate stack
usage, it does look a lot like someone passed a pointer to a stack
allocated value, and that pointer is referenced after that value has
gone out of scope.
This is "fixed" by temporarily disabling valgrind error reporting while
iterating over the stack.
`thread_measure_stack_free()` previously assumed that reading past the
stack is safe. When the stack was indeed part of a thread, the
`thread_t` structure is put after the stack, increasing the odds of
this assumption to hold. However, `thread_measure_stack_free()` could
also be used on the ISR stack, which may be allocated at the end of
SRAM.
A second parameter had to be added to indicate the stack size, so that
reading past the stack can now be prevented.
This also makes valgrind happy on `native`/`native64`.
We occasionally have some public `foo.h` header that includes a private
`foo_arch.h` header. Users are expected to include the `foo.h` header
and not the `foo_arch.h`. However, clangd will claim that the `#include`
of `foo.h` is unused if only functions / macros/ types / ... from
`foor_arch.h` is used and nothing from `foo.h`.
This adds the `IWYU pragma: export` comment to the include of
`foo_arch.h` in `foo.h`, so that clangd treats functions / macros /
types provided by `foo_arch.h` as if they were instead provided by
`foo.h`, which fixes the false positives.
This patch adds calls to be able to peek at items other than just the
oldest item in a cib based FIFO. It also adds an "unsafe" peek to match
the existing "unsafe" put and get functions.