Previously `shell_commands` was a "catch-all" module that included
shell commands for each and every used module that has a shell
companion. Instead, the new `shell_cmds` module is now used to provide
shell commands as individually selectable submodules, e.g.
`cmd_gnrc_icmpv6_echo` now provides the ICMPv6 echo command (a.k.a.
ping).
To still have a "catch all" module to pull in shell commands of modules
already used, `shell_cmds_default` was introduced. `shell_commands`
depends now on `shell_cmds_default` for backward compatibility, but
has been deprecated. New apps should use `shell_cmds_default`
instead.
For a handful of shell commands individual selection was already
possible. Those modules now depend on the corresponding `cmd_%` module
and they have been deprecated.
JLink presumably has information about the device's RAM available
internally. Not passing the precise symbol area (which would be
available in the ELF file) because a) that'd make the terminal break
when the flashed firmware does not equal the built one, and b) that
would introduce a dependency from `term` to the ELF file that other
terminals don't have.
When `stdio_cdc_acm` is used, assume `"RIOT-os\.org"` as vendor string
and `$(BOARD)` being used as model string. This is the default
behavior in RIOT since eaace28804effe222b4cfbdbb19dbf621f00ed84
After introducing #18423 there are occasional messages that still happen.
These messages cause a diff output when testing with TEST_KCONFIG=1.
This then causes a failure when comparing make/kconfig modules and packages.
A if `netdev_driver_t::confirm_send()` is provided, it provides the
new netdev API. However, detecting the API at runtime and handling
both API styles comes at a cost. This can be optimized in case only
new or only old style netdevs are in use.
To do so, this adds the pseudo modules `netdev_legacy_api` and
`netdev_new_api`. As right now no netdev actually implements the new
API, all netdevs pull in `netdev_legacy_api`. If `netdev_legacy_api` is
in used but `netdev_new_api` is not, we can safely assume at compile
time that only legacy netdevs are in use. Similar, if only
`netdev_new_api` is used, only support for the new API is needed. Only
when both are in use, run time checks are needed.
This provides two helper function to check for a netif if the
corresponding netdev implements the old or the new API. (With one
being the inverse of the other.) They are suitable for constant folding
when only new or only legacy devices are in use. Consequently, dead
branches should be eliminated by the optimizer.
Allow issuing a reset to bootloader sequence by abusing the RTS and
the DTR pins of a TTL adapter. This makes flashing via UART much
more convenient, as no jumpers need to be placed to select booting to
the bootloader / flash and no reset buttons need to be pressed.
If Quad SPI modes qout or qio are set by variable FLASH_MODE, esptool.py has to be called with parameter `--flash_mode dio` so that the first stage bootloader is always using Dual SPI mode.
Examples have previously relied on the (really: some) nightly toolchain
to be the default. As that, in practice, is a problematic assumption,
the latest toolchain to use is now determined programmatically, and that
is set explicitly on the examples that use nightly.
Workaround-For: https://github.com/rust-lang/rustup/issues/3015
Let's consider firmwares as identical if their flash files are matching.
This will have the side effect that hash mismatches for ESP32 due to
different .debug sections in the ELFFILE are prevented, as for ESP32
the BINFILE is used.
This is also a workaround for Rust's [97685], but primarily to enhance
the error message by pointing out that -Zbuild-std is an option, and
generally presenting the error as RIOT usually does.
[97685]: https://github.com/rust-lang/rust/issues/97685
Module to lock the shell after a given timeout of time x. When the
shell did not receive any input within time x, then the shell is
locked automatically.
When `MOST_RECENT_PORT` is set to `1`, the most recently added USB
serial is selected. This is a crude but surprisingly effective filter.
However, for the CC2560-Launchpad this doesn't work, as it provides
two USB serials. The first USB serial interface is the targeted UART
bridge and the second controls the debugger. Since the second is added
a tiny fraction after the first, this reliably selects the wrong
interface. Allowing the board to filter USB serials first can avoid
this issue.
This is also useful as e.g. an STM Nucleo board can easily be told
apart from an `samr21-xpro` or an nRF52840dk using such filters.