1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-12-18 02:53:52 +01:00
RIOT/cpu/stm32/periph/adc_wl.c
2025-04-02 22:45:35 +02:00

221 lines
5.8 KiB
C

/*
* Copyright (C) 2014-2016 Freie Universität Berlin
* Copyright (C) 2018 HAW-Hamburg
* Copyright (C) 2021 Inria
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32
* @ingroup drivers_periph_adc
* @{
*
* @file
* @brief Low-level ADC driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Michel Rottleuthner <michel.rottleuthner@haw-hamburg.de>
* @author Francisco Molina <francois-xavier.molina@inria.fr>
*
* @}
*/
#include "cpu.h"
#include "mutex.h"
#include "busy_wait.h"
#include "periph/adc.h"
#include "periph_conf.h"
#include "periph/vbat.h"
/**
* @brief Default VBAT undefined value
*/
#ifndef VBAT_ADC
#define VBAT_ADC ADC_UNDEF
#endif
/* ADC register CR bits with HW property "rs":
* Software can read as well as set this bit. We want to avoid writing a status
* bit with a Read-Modify-Write cycle and accidentally setting other status
* bits as well. Writing '0' has no effect on the bit value. */
#define ADC_CR_BITS_PROPERTY_RS (ADC_CR_ADCAL | ADC_CR_ADSTP | ADC_CR_ADSTART \
| ADC_CR_ADDIS | ADC_CR_ADEN)
/**
* @brief Allocate lock for the ADC device
*
* All STM32WL CPUs we support so far only come with a single ADC device.
*/
static mutex_t lock = MUTEX_INIT;
static inline void prep(void)
{
mutex_lock(&lock);
periph_clk_en(APB2, RCC_APB2ENR_ADCEN);
}
static inline void done(void)
{
periph_clk_dis(APB2, RCC_APB2ENR_ADCEN);
mutex_unlock(&lock);
}
static int _enable_adc(void)
{
/* check if the ADC is not already enabled */
if (ADC->CR & ADC_CR_ADEN) {
return 0;
}
/* ensure the prerequisites are right */
if (ADC->CR & (ADC_CR_ADCAL | ADC_CR_ADSTP | ADC_CR_ADSTART | ADC_CR_ADDIS)) {
return -1;
}
/* clear ADRDY by writing to it */
ADC->ISR |= ADC_ISR_ADRDY;
/* enable the ADC and wait for the READY flag */
ADC->CR = (ADC->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADEN;
while (!(ADC->ISR & ADC_ISR_ADRDY)) {}
return 0;
}
static int _disable_adc(void)
{
/* check if disable is going on or ADC is disabled already */
if ((ADC->CR & ADC_CR_ADDIS) || !(ADC->CR & ADC_CR_ADEN)) {
while (ADC->CR & ADC_CR_ADDIS) {}
return 0;
}
/* make sure no conversion is going on and stop it if it is */
if (ADC->CR & ADC_CR_ADSTART) {
ADC->CR = (ADC->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADSTP;
while (ADC->CR & ADC_CR_ADSTP) {}
}
/* disable the ADC and wait until is is disabled*/
ADC->CR = (ADC->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADDIS;
while (!(ADC->CR & ADC_CR_ADEN)) {}
/* clear the ADRDY bit by writing 1 to it */
ADC->ISR |= ADC_ISR_ADRDY;
return 0;
}
int adc_init(adc_t line)
{
/* check if the line is valid */
if (line >= ADC_NUMOF) {
return -1;
}
/* lock device and enable its peripheral clock */
prep();
/* configure the pin */
if (adc_config[line].pin != GPIO_UNDEF) {
gpio_init_analog(adc_config[line].pin);
}
/* init ADC line only if it wasn't already initialized. Check a register
* set by the initialization which has a reset value of 0 */
if (ADC->SMPR == 0) {
/* set prescaler to 0 to let the ADC run with maximum speed */
ADC_COMMON->CCR &= ~(ADC_CCR_PRESC);
/* set ADC clock to PCLK/2 otherwise */
ADC->CFGR2 &= ~(ADC_CFGR2_CKMODE_0 | ADC_CFGR2_CKMODE_1);
ADC->CFGR2 |= ADC_CFGR2_CKMODE_0;
/* enable ADC internal voltage regulator and wait for startup period */
ADC->CR = (ADC->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADVREGEN;
busy_wait(ADC_T_ADCVREG_STUP_US * 2);
/* start automatic calibration and wait for it to complete */
ADC->CR = (ADC->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADCAL;
while (ADC->CR & ADC_CR_ADCAL) {}
/* set sequence length to 1 conversion */
ADC->CFGR1 &= ~ADC_CFGR1_CONT;
/* Set Sampling Time Register 1 to 3.5 ADC Cycles for all GPIO-Channels
* and Sampling Time Register 2 to 39.5 ADC Cycles for VBat. Set the
* VBat channel to use Sampling Time Register 2. */
ADC->SMPR = ADC_SMPR_SMP1_0;
if (IS_USED(MODULE_PERIPH_VBAT)) {
ADC->SMPR |= ADC_SMPR_SMP2_2 | ADC_SMPR_SMP2_0 |
(1 << (adc_config[VBAT_ADC].chan+ ADC_SMPR_SMPSEL_Pos));
}
}
/* free the device again */
done();
return 0;
}
int32_t adc_sample(adc_t line, adc_res_t res)
{
int sample;
/* check if resolution is applicable */
if ((res & ADC_CFGR1_RES) != res) {
return -1;
}
/* lock and power on the ADC device */
prep();
/* check if this is the VBAT line */
if (IS_USED(MODULE_PERIPH_VBAT) && line == VBAT_ADC) {
vbat_enable();
}
/* first clear resolution */
ADC->CFGR1 &= ~ADC_CFGR1_RES;
/* then set resolution to the required value*/
ADC->CFGR1 |= res;
/* specify channel for regular conversion */
ADC->CHSELR = (1 << adc_config[line].chan);
/* check if the ADC was enabled successfully */
if (_enable_adc() == -1) {
done();
return -1;
}
/* start conversion and wait for it to complete */
ADC->CR = (ADC->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADSTART;
while (!(ADC->ISR & ADC_ISR_EOC)) {}
/* read the sample */
sample = (int)ADC->DR;
/* check if this is the VBAT line */
if (IS_USED(MODULE_PERIPH_VBAT) && line == VBAT_ADC) {
vbat_disable();
}
/* disable, unlock and power off the device again */
int ret = _disable_adc();
done();
if (ret == -1) {
return -1;
}
else {
return sample;
}
}