1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-12-19 11:33:51 +01:00
RIOT/cpu/stm32/periph/adc_f0_g0_c0.c
2025-04-02 22:45:35 +02:00

248 lines
6.6 KiB
C

/*
* Copyright (C) 2014-2016 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_stm32
* @ingroup drivers_periph_adc
* @{
*
* @file
* @brief Low-level ADC driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include "cpu.h"
#include "mutex.h"
#include "periph/adc.h"
#include "periph/vbat.h"
#include "busy_wait.h"
/**
* @brief Default VBAT undefined value
*/
#ifndef VBAT_ADC
#define VBAT_ADC ADC_UNDEF
#endif
/* ADC register CR bits with HW property "rs":
* Software can read as well as set this bit. We want to avoid writing a status
* bit with a Read-Modify-Write cycle and accidentally setting other status
* bits as well. Writing '0' has no effect on the bit value. */
#define ADC_CR_BITS_PROPERTY_RS (ADC_CR_ADCAL | ADC_CR_ADSTP | ADC_CR_ADSTART \
| ADC_CR_ADDIS | ADC_CR_ADEN)
/**
* @brief Allocate lock for the ADC device
*
* All STM32F0 & STM32G0 CPUs we support so far only come with a single ADC device.
*/
static mutex_t lock = MUTEX_INIT;
static inline void prep(void)
{
mutex_lock(&lock);
#ifdef RCC_APB2ENR_ADCEN
periph_clk_en(APB2, RCC_APB2ENR_ADCEN);
#endif
#ifdef RCC_APBENR2_ADCEN
periph_clk_en(APB12, RCC_APBENR2_ADCEN);
#endif
}
static inline void done(void)
{
#ifdef RCC_APB2ENR_ADCEN
periph_clk_dis(APB2, RCC_APB2ENR_ADCEN);
#endif
#ifdef RCC_APBENR2_ADCEN
periph_clk_dis(APB12, RCC_APBENR2_ADCEN);
#endif
mutex_unlock(&lock);
}
static int _enable_adc(void)
{
/* check if the ADC is not already enabled */
if (ADC1->CR & ADC_CR_ADEN) {
return 0;
}
/* ensure the prerequisites are right */
if (ADC1->CR & (ADC_CR_ADCAL | ADC_CR_ADSTP | ADC_CR_ADSTART | ADC_CR_ADDIS)) {
return -1;
}
/* enable the ADC and wait for the READY flag */
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADEN;
while (!(ADC1->ISR & ADC_ISR_ADRDY)) {
/* the calibration logic can reset the ADEN flag, so keep enabling it */
if (!(ADC1->CR & ADC_CR_ADEN)) {
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADEN;
}
}
return 0;
}
static int _disable_adc(void)
{
/* check if disable is going on or ADC is disabled already */
if ((ADC1->CR & ADC_CR_ADDIS) || !(ADC1->CR & ADC_CR_ADEN)) {
while (ADC1->CR & ADC_CR_ADDIS) {}
return 0;
}
/* make sure no conversion is going on and stop it if it is */
if (ADC1->CR & ADC_CR_ADSTART) {
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADSTP;
while (ADC1->CR & ADC_CR_ADSTP) {}
}
/* disable the ADC and wait until is is disabled*/
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADDIS;
while (!(ADC1->CR & ADC_CR_ADEN)) {}
return 0;
}
int adc_init(adc_t line)
{
/* make sure the given line is valid */
if (line >= ADC_NUMOF) {
return -1;
}
/* lock and power on the device, but keep it disabled */
prep();
_disable_adc();
/* configure the pin */
if (adc_config[line].pin != GPIO_UNDEF) {
gpio_init_analog(adc_config[line].pin);
}
/* init ADC only if it wasn't already initialized. Check a register
* set by the initialization which has a reset value of 0 */
if (ADC1->SMPR == 0) {
/* reset configuration, including ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | ADC_CFGR1_AUTOFF */
ADC1->CFGR1 = 0;
ADC1->CFGR2 = 0;
/* Calibration procedure according to:
* - RM0360 section 12.3.2 for the STM32F0
* - RM0454 section 14.3.3 for the STM32G0
* - RM0490 section 16.4.3 for the STM32C0 */
/* only enable the ADC voltage regulator if the chip has one (STM32F0 does not) */
#if defined(ADC_CR_ADVREGEN)
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADVREGEN;
/* wait for t_ADCVREG_STUP = 20us with some headroom due to busy_wait_us being inaccurate */
busy_wait_us(100);
#endif
/* the STM32C0 requires an averaging of eight calibration values */
#if defined(CPU_FAM_STM32C0) || defined(CPU_FAM_STM32G0)
uint32_t calfact = 0;
for (uint32_t i = 8; i > 0; i--) {
/* perform a calibration and wait for the flag to clear */
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADCAL;
while (ADC1->CR & ADC_CR_ADCAL) {}
calfact += ADC1->CALFACT;
}
/* round up to the nearest integer */
calfact = (calfact + 4) / 8;
/* enable the ADC to write the calibration factor and wait before writing and disabling */
if (_enable_adc() == -1) {
return -1;
}
busy_wait_us(100);
/* apply the calibration factor and mask it in case it is bigger than 0x7F */
ADC1->CALFACT = calfact & ADC_CALFACT_CALFACT;
_disable_adc();
/* configure sampling time to a safe value */
ADC1->SMPR = ADC_SMPR_SMP1_2 | ADC_SMPR_SMP1_0; /* 39.5 ADC clock cycles */
#else
/* perform a calibration and wait for the flag to clear */
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADCAL;
while (ADC1->CR & ADC_CR_ADCAL) {}
/* configure sampling time to safe value */
ADC1->SMPR = ADC_SMPR_SMP_1 | ADC_SMPR1_SMPR_0; /* 28.5 ADC clock cycles */
#endif
}
/* power off an release device for now */
done();
return 0;
}
int32_t adc_sample(adc_t line, adc_res_t res)
{
int sample;
/* check if resolution is applicable */
if ((res & ADC_CFGR1_RES) != res) {
return -1;
}
/* lock and power on the ADC device */
prep();
/* check if this is the VBAT line */
if (IS_USED(MODULE_PERIPH_VBAT) && line == VBAT_ADC) {
vbat_enable();
}
/* set resolution and channel */
ADC1->CFGR1 = res;
ADC1->CHSELR = (1 << adc_config[line].chan);
/* check if the ADC was enabled successfully */
if (_enable_adc() == -1) {
done();
return -1;
}
/* start conversion and wait for results */
ADC1->CR = (ADC1->CR & ~ADC_CR_BITS_PROPERTY_RS) | ADC_CR_ADSTART;
while (!(ADC1->ISR & ADC_ISR_EOC)) {}
/* read result */
sample = (int)ADC1->DR;
/* check if this is the VBAT line */
if (IS_USED(MODULE_PERIPH_VBAT) && line == VBAT_ADC) {
vbat_disable();
}
/* disable, unlock and power off device again */
int ret = _disable_adc();
done();
if (ret == -1) {
return -1;
} else {
return sample;
}
}