cpu/sam0: optimizations to the shared UART driver

This commit is contained in:
Hauke Petersen 2017-09-01 14:51:56 +02:00
parent 48ef1cd6c9
commit 68abdff15a
2 changed files with 42 additions and 158 deletions

View File

@ -230,7 +230,7 @@ static inline void sercom_clk_en(void *sercom)
if (sercom_id(sercom) < 5) { if (sercom_id(sercom) < 5) {
MCLK->APBCMASK.reg |= (MCLK_APBCMASK_SERCOM0 << sercom_id(sercom)); MCLK->APBCMASK.reg |= (MCLK_APBCMASK_SERCOM0 << sercom_id(sercom));
} else { } else {
MCLK->ABPDMASK.reg |= (MCLK_APBCMASK_SERCOM5); MCLK->APBDMASK.reg |= (MCLK_APBDMASK_SERCOM5);
} }
#endif #endif
} }
@ -248,7 +248,7 @@ static inline void sercom_clk_dis(void *sercom)
if (sercom_id(sercom) < 5) { if (sercom_id(sercom) < 5) {
MCLK->APBCMASK.reg &= ~(MCLK_APBCMASK_SERCOM0 << sercom_id(sercom)); MCLK->APBCMASK.reg &= ~(MCLK_APBCMASK_SERCOM0 << sercom_id(sercom));
} else { } else {
MCLK->ABPDMASK.reg &= ~(MCLK_APBCMASK_SERCOM5); MCLK->APBDMASK.reg &= ~(MCLK_APBDMASK_SERCOM5);
} }
#endif #endif
} }

View File

@ -46,28 +46,11 @@ static uart_isr_ctx_t uart_ctx[UART_NUMOF];
* *
* @return base register address * @return base register address
*/ */
static inline SercomUsart *_uart(uart_t dev) static inline SercomUsart *dev(uart_t dev)
{ {
return uart_config[dev].dev; return uart_config[dev].dev;
} }
#ifdef CPU_FAM_SAML21
static uint64_t _long_division(uint64_t n, uint64_t d);
static uint8_t sercom_gclk_id[] =
{
SERCOM0_GCLK_ID_CORE,
SERCOM1_GCLK_ID_CORE,
SERCOM2_GCLK_ID_CORE,
SERCOM3_GCLK_ID_CORE,
SERCOM4_GCLK_ID_CORE,
SERCOM5_GCLK_ID_CORE
};
#endif
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg) int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{ {
if (uart >= UART_NUMOF) { if (uart >= UART_NUMOF) {
@ -78,74 +61,48 @@ int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
gpio_init(uart_config[uart].rx_pin, GPIO_IN); gpio_init(uart_config[uart].rx_pin, GPIO_IN);
gpio_init_mux(uart_config[uart].rx_pin, uart_config[uart].mux); gpio_init_mux(uart_config[uart].rx_pin, uart_config[uart].mux);
gpio_init(uart_config[uart].tx_pin, GPIO_OUT); gpio_init(uart_config[uart].tx_pin, GPIO_OUT);
gpio_set(uart_config[uart].tx_pin);
gpio_init_mux(uart_config[uart].tx_pin, uart_config[uart].mux); gpio_init_mux(uart_config[uart].tx_pin, uart_config[uart].mux);
#ifdef CPU_FAM_SAMD21 /* enable peripheral clock */
/* calculate baudrate */ sercom_clk_en(dev(uart));
uint32_t baud = ((((uint32_t)CLOCK_CORECLOCK * 10) / baudrate) / 16);
/* enable sync and async clocks */
uart_poweron(uart);
/* reset the UART device */ /* reset the UART device */
_uart(uart)->CTRLA.reg = SERCOM_USART_CTRLA_SWRST; dev(uart)->CTRLA.reg = SERCOM_USART_CTRLA_SWRST;
while (_uart(uart)->SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_SWRST) {} while (dev(uart)->SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_SWRST) {}
/* configure clock generator */
sercom_set_gen(dev(uart), uart_config[uart].gclk_src);
/* set asynchronous mode w/o parity, LSB first, TX and RX pad as specified /* set asynchronous mode w/o parity, LSB first, TX and RX pad as specified
* by the board in the periph_conf.h, x16 sampling and use internal clock */ * by the board in the periph_conf.h, x16 sampling and use internal clock */
_uart(uart)->CTRLA.reg = (SERCOM_USART_CTRLA_DORD | dev(uart)->CTRLA.reg = (SERCOM_USART_CTRLA_DORD |
SERCOM_USART_CTRLA_SAMPR(0x1) | SERCOM_USART_CTRLA_SAMPR(0x1) |
SERCOM_USART_CTRLA_TXPO(uart_config[uart].tx_pad) | SERCOM_USART_CTRLA_TXPO(uart_config[uart].tx_pad) |
SERCOM_USART_CTRLA_RXPO(uart_config[uart].rx_pad) | SERCOM_USART_CTRLA_RXPO(uart_config[uart].rx_pad) |
SERCOM_USART_CTRLA_MODE_USART_INT_CLK | SERCOM_USART_CTRLA_MODE(0x1) |
(uart_config[uart].runstdby ? (uart_config[uart].runstdby ?
SERCOM_USART_CTRLA_RUNSTDBY : 0)); SERCOM_USART_CTRLA_RUNSTDBY : 0));
/* set baudrate */ /* calculate and set baudrate */
_uart(uart)->BAUD.FRAC.FP = (baud % 10); uint32_t baud = ((((uint32_t)CLOCK_CORECLOCK * 10) / baudrate) / 16);
_uart(uart)->BAUD.FRAC.BAUD = (baud / 10); dev(uart)->BAUD.FRAC.FP = (baud % 10);
/* enable receiver and transmitter, use 1 stop bit */ dev(uart)->BAUD.FRAC.BAUD = (baud / 10);
_uart(uart)->CTRLB.reg = (SERCOM_USART_CTRLB_RXEN | SERCOM_USART_CTRLB_TXEN);
while (_uart(uart)->SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_CTRLB) {}
#elif CPU_FAM_SAML21
/* Calculate the BAUD value */
uint64_t temp1 = ((16 * ((uint64_t)baudrate)) << 32);
uint64_t ratio = _long_division(temp1 , CLOCK_CORECLOCK);
uint64_t scale = ((uint64_t)1 << 32) - ratio;
uint64_t baud_calculated = (65536 * scale) >> 32;
_uart(uart)->CTRLA.bit.ENABLE = 0; /* Disable to write, need to sync tho */ /* enable transmitter, and configure 8N1 mode */
while(_uart(uart)->SYNCBUSY.bit.ENABLE) {} dev(uart)->CTRLB.reg = (SERCOM_USART_CTRLB_TXEN);
/* enable receiver and RX interrupt if configured */
/* set to LSB, asynchronous mode without parity, PAD0 Tx, PAD1 Rx,
* 16x over-sampling, internal clk */
_uart(uart)->CTRLA.reg = SERCOM_USART_CTRLA_DORD \
| SERCOM_USART_CTRLA_FORM(0x0) \
| SERCOM_USART_CTRLA_SAMPA(0x0) \
| SERCOM_USART_CTRLA_TXPO(uart_config[uart].tx_pad) \
| SERCOM_USART_CTRLA_RXPO(uart_config[uart].rx_pad) \
| SERCOM_USART_CTRLA_SAMPR(0x0) \
| SERCOM_USART_CTRLA_MODE(0x1) \
| (uart_config[uart].runstdby ?
SERCOM_USART_CTRLA_RUNSTDBY : 0);
/* Set baud rate */
_uart(uart)->BAUD.bit.BAUD = baud_calculated;
/* enable receiver and transmitter, one stop bit*/
_uart(uart)->CTRLB.reg = (SERCOM_USART_CTRLB_RXEN | SERCOM_USART_CTRLB_TXEN);
while(_uart(uart)->SYNCBUSY.bit.CTRLB) {}
uart_poweron(uart);
#endif
/* finally, enable the device */
_uart(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
/* register callbacks */
if (rx_cb) { if (rx_cb) {
uart_ctx[uart].rx_cb = rx_cb; uart_ctx[uart].rx_cb = rx_cb;
uart_ctx[uart].arg = arg; uart_ctx[uart].arg = arg;
/* configure interrupts and enable RX interrupt */ NVIC_EnableIRQ(SERCOM0_IRQn + sercom_id(dev(uart)));
NVIC_EnableIRQ(SERCOM0_IRQn + sercom_id(_uart(uart))); dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_RXEN;
_uart(uart)->INTENSET.reg |= SERCOM_USART_INTENSET_RXC; dev(uart)->INTENSET.reg |= SERCOM_USART_INTENSET_RXC;
} }
while (dev(uart)->SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_CTRLB) {}
/* and finally enable the device */
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
return UART_OK; return UART_OK;
} }
@ -153,85 +110,36 @@ int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
void uart_write(uart_t uart, const uint8_t *data, size_t len) void uart_write(uart_t uart, const uint8_t *data, size_t len)
{ {
for (size_t i = 0; i < len; i++) { for (size_t i = 0; i < len; i++) {
while (!(_uart(uart)->INTFLAG.reg & SERCOM_USART_INTFLAG_DRE)) {} while (!(dev(uart)->INTFLAG.reg & SERCOM_USART_INTFLAG_DRE)) {}
_uart(uart)->DATA.reg = data[i]; dev(uart)->DATA.reg = data[i];
while (_uart(uart)->INTFLAG.reg & SERCOM_USART_INTFLAG_TXC) {} while (dev(uart)->INTFLAG.reg & SERCOM_USART_INTFLAG_TXC) {}
} }
} }
void uart_poweron(uart_t uart) void uart_poweron(uart_t uart)
{ {
#ifdef CPU_FAM_SAMD21 sercom_clk_en(dev(uart));
PM->APBCMASK.reg |= (PM_APBCMASK_SERCOM0 << sercom_id(_uart(uart))); dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
GCLK->CLKCTRL.reg = (GCLK_CLKCTRL_CLKEN |
GCLK_CLKCTRL_GEN(uart_config[uart].gclk_src) |
(SERCOM0_GCLK_ID_CORE + sercom_id(_uart(uart))) <<
GCLK_CLKCTRL_ID_Pos);
while (GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY) {}
#elif CPU_FAM_SAML21
/* Enable the peripheral channel */
GCLK->PCHCTRL[sercom_gclk_id[sercom_id(_uart(uart))]].reg |=
GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(uart_config[uart].gclk_src);
while (!(GCLK->PCHCTRL[sercom_gclk_id[sercom_id(_uart(uart))]].reg &
GCLK_PCHCTRL_CHEN)) {}
if(sercom_gclk_id[sercom_id(_uart(uart))] < 5) {
MCLK->APBCMASK.reg |= MCLK_APBCMASK_SERCOM0 << sercom_id(_uart(uart));
}
else {
MCLK->APBDMASK.reg |= MCLK_APBDMASK_SERCOM5;
}
while (_uart(uart)->SYNCBUSY.reg) {}
#endif
/* finally, enable the device */
_uart(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
} }
void uart_poweroff(uart_t uart) void uart_poweroff(uart_t uart)
{ {
#ifdef CPU_FAM_SAMD21 dev(uart)->CTRLA.reg &= ~(SERCOM_USART_CTRLA_ENABLE);
PM->APBCMASK.reg &= ~(PM_APBCMASK_SERCOM0 << sercom_id(_uart(uart))); sercom_clk_dis(dev(uart));
GCLK->CLKCTRL.reg = ((SERCOM0_GCLK_ID_CORE + sercom_id(_uart(uart))) <<
GCLK_CLKCTRL_ID_Pos);
while (GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY) {}
#elif CPU_FAM_SAML21
/* Enable the peripheral channel */
GCLK->PCHCTRL[sercom_gclk_id[sercom_id(_uart(uart))]].reg &= ~GCLK_PCHCTRL_CHEN;
if(sercom_gclk_id[sercom_id(_uart(uart))] < 5) {
MCLK->APBCMASK.reg &= ~(MCLK_APBCMASK_SERCOM0 << sercom_id(_uart(uart)));
}
else {
MCLK->APBDMASK.reg &= ~MCLK_APBDMASK_SERCOM5;
}
while (_uart(uart)->SYNCBUSY.reg) {}
#endif
} }
static inline void irq_handler(uint8_t uartnum) static inline void irq_handler(unsigned uartnum)
{ {
#ifdef CPU_FAM_SAMD21 if (dev(uartnum)->INTFLAG.reg & SERCOM_USART_INTFLAG_RXC) {
if (_uart(uartnum)->INTFLAG.reg & SERCOM_USART_INTFLAG_RXC) {
/* interrupt flag is cleared by reading the data register */ /* interrupt flag is cleared by reading the data register */
uart_ctx[uartnum].rx_cb(uart_ctx[uartnum].arg, uart_ctx[uartnum].rx_cb(uart_ctx[uartnum].arg,
(uint8_t)(_uart(uartnum)->DATA.reg)); (uint8_t)(dev(uartnum)->DATA.reg));
} }
else if (_uart(uartnum)->INTFLAG.reg & SERCOM_USART_INTFLAG_ERROR) { else if (dev(uartnum)->INTFLAG.reg & SERCOM_USART_INTFLAG_ERROR) {
/* clear error flag */ /* clear error flag */
_uart(uartnum)->INTFLAG.reg = SERCOM_USART_INTFLAG_ERROR; dev(uartnum)->INTFLAG.reg = SERCOM_USART_INTFLAG_ERROR;
} }
#elif CPU_FAM_SAML21
if (_uart(uartnum)->INTFLAG.bit.RXC) {
/* cleared by reading DATA regiser */
uint8_t data = (uint8_t)_uart(uartnum)->DATA.reg;
uart_ctx[uartnum].rx_cb(uart_ctx[uartnum].arg, data);
}
else if (_uart(uartnum)->INTFLAG.bit.ERROR) {
/* clear error flag */
_uart(uartnum)->INTFLAG.reg |= SERCOM_USART_INTFLAG_ERROR;
}
#endif
cortexm_isr_end(); cortexm_isr_end();
} }
@ -277,28 +185,4 @@ void UART_5_ISR(void)
} }
#endif #endif
#ifdef CPU_FAM_SAML21
static uint64_t _long_division(uint64_t n, uint64_t d)
{
int32_t i;
uint64_t q = 0, r = 0, bit_shift;
for (i = 63; i >= 0; i--) {
bit_shift = (uint64_t)1 << i;
r = r << 1;
if (n & bit_shift) {
r |= 0x01;
}
if (r >= d) {
r = r - d;
q |= bit_shift;
}
}
return q;
}
#endif
#endif /* UART_NUMOF */ #endif /* UART_NUMOF */