tests/pkg_emlearn: add sample application
This commit is contained in:
parent
5325233928
commit
b5dd94d223
2
tests/pkg_emlearn/.gitignore
vendored
Normal file
2
tests/pkg_emlearn/.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
model.h
|
||||
tmp/
|
||||
13
tests/pkg_emlearn/Makefile
Normal file
13
tests/pkg_emlearn/Makefile
Normal file
@ -0,0 +1,13 @@
|
||||
include ../Makefile.tests_common
|
||||
|
||||
USEPKG += emlearn
|
||||
|
||||
BLOBS += digit
|
||||
|
||||
BUILDDEPS += model.h
|
||||
|
||||
include $(RIOTBASE)/Makefile.include
|
||||
|
||||
model.h: $(CURDIR)/model
|
||||
$(Q)$(CURDIR)/generate_model.py
|
||||
$(Q)echo "/* fix for no newline at eof */\n" >> model.h
|
||||
40
tests/pkg_emlearn/README.md
Normal file
40
tests/pkg_emlearn/README.md
Normal file
@ -0,0 +1,40 @@
|
||||
## Emlearn package test application
|
||||
|
||||
This application shows how to use a machine learning model with emlearn on RIOT
|
||||
in order to predict a value from a hand written digit image.
|
||||
The model is a [Scikit-Learn](https://scikit-learn.org) random forest estimator
|
||||
trained on the MNIST dataset.
|
||||
|
||||
### Expected output
|
||||
|
||||
The default digit to predict is a hand-written '6', so the application output
|
||||
is the following:
|
||||
|
||||
```
|
||||
Predicted digit: 6
|
||||
```
|
||||
|
||||
### Use the Python scripts
|
||||
|
||||
The application comes with 3 Python scripts:
|
||||
- `generate_digit.py` is used to generate a new digit file. This file is
|
||||
embedded in the firmware image and is used as input for the inference engine.
|
||||
Use the `-i` option to select a different digit.
|
||||
For example, the following command:
|
||||
```
|
||||
$ ./generate_digit.py -i 1
|
||||
```
|
||||
will generate a digit containing a '9'.
|
||||
The digit is displayed at the end of the script so one knows which digit is
|
||||
stored.
|
||||
Note that each time a new digit is generated, the firmware image must be
|
||||
rebuilt to include this new digit.
|
||||
- `train_model.py` is used to train a new Scikit-Learn Random Forest estimator.
|
||||
The trained model is stored in the `model` binary file.
|
||||
```
|
||||
$ ./train_model.py
|
||||
```
|
||||
will just train the model.
|
||||
- `generate_model.py` is used to generate the `sonar.h` header file from the
|
||||
`model` binary file. The script is called automatically by the build system
|
||||
when the `model` binary file is updated.
|
||||
BIN
tests/pkg_emlearn/digit
Normal file
BIN
tests/pkg_emlearn/digit
Normal file
Binary file not shown.
43
tests/pkg_emlearn/generate_digit.py
Executable file
43
tests/pkg_emlearn/generate_digit.py
Executable file
@ -0,0 +1,43 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
"""Generate a binary file from a sample image of the MNIST dataset.
|
||||
Pixel of the sample are stored as float32, images have size 8x8.
|
||||
"""
|
||||
|
||||
import os
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn import datasets
|
||||
|
||||
SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__))
|
||||
|
||||
|
||||
def main(args):
|
||||
output_path = os.path.join(SCRIPT_DIR, args.output)
|
||||
digits = datasets.load_digits()
|
||||
|
||||
rnd = 42
|
||||
_, data, _, _ = train_test_split(digits.data, digits.target,
|
||||
random_state=rnd)
|
||||
data = data[args.index]
|
||||
np.ndarray.tofile(data.astype('float32'), output_path)
|
||||
|
||||
if args.no_plot is False:
|
||||
plt.gray()
|
||||
plt.imshow(data.reshape(8, 8))
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-i", "--index", type=int, default=0,
|
||||
help="Image index in MNIST test dataset")
|
||||
parser.add_argument("-o", "--output", type=str, default='digit',
|
||||
help="Output filename")
|
||||
parser.add_argument("--no-plot", default=False, action='store_true',
|
||||
help="Disable image display in matplotlib")
|
||||
main(parser.parse_args())
|
||||
8
tests/pkg_emlearn/generate_model.py
Executable file
8
tests/pkg_emlearn/generate_model.py
Executable file
@ -0,0 +1,8 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import emlearn
|
||||
import joblib
|
||||
|
||||
estimator = joblib.load("model")
|
||||
cmodel = emlearn.convert(estimator)
|
||||
cmodel.save(file='model.h')
|
||||
36
tests/pkg_emlearn/main.c
Normal file
36
tests/pkg_emlearn/main.c
Normal file
@ -0,0 +1,36 @@
|
||||
/*
|
||||
* Copyright (C) 2019 Inria
|
||||
*
|
||||
* This file is subject to the terms and conditions of the GNU Lesser
|
||||
* General Public License v2.1. See the file LICENSE in the top level
|
||||
* directory for more details.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @ingroup tests
|
||||
* @{
|
||||
*
|
||||
* @file
|
||||
* @brief Emlearn test application
|
||||
*
|
||||
* @author Alexandre Abadie <alexandre.abadie@inria.fr>
|
||||
*
|
||||
* @}
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <inttypes.h>
|
||||
|
||||
#include "model.h"
|
||||
|
||||
/* the digit array included must be 4-byte aligned */
|
||||
__attribute__((__aligned__(4)))
|
||||
#include "blob/digit.h"
|
||||
|
||||
int main(void)
|
||||
{
|
||||
printf("Predicted digit: %" PRIi32 "\n",
|
||||
model_predict((const float *)digit, digit_len >> 2));
|
||||
|
||||
return 0;
|
||||
}
|
||||
BIN
tests/pkg_emlearn/model
Normal file
BIN
tests/pkg_emlearn/model
Normal file
Binary file not shown.
18
tests/pkg_emlearn/tests/01-run.py
Executable file
18
tests/pkg_emlearn/tests/01-run.py
Executable file
@ -0,0 +1,18 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (C) 2019 Inria
|
||||
#
|
||||
# This file is subject to the terms and conditions of the GNU Lesser
|
||||
# General Public License v2.1. See the file LICENSE in the top level
|
||||
# directory for more details.
|
||||
|
||||
import sys
|
||||
from testrunner import run
|
||||
|
||||
|
||||
def testfunc(child):
|
||||
child.expect_exact("Predicted digit: 6")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
sys.exit(run(testfunc))
|
||||
27
tests/pkg_emlearn/train_model.py
Executable file
27
tests/pkg_emlearn/train_model.py
Executable file
@ -0,0 +1,27 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import joblib
|
||||
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn import metrics, datasets
|
||||
|
||||
rnd = 42
|
||||
digits = datasets.load_digits()
|
||||
Xtrain, Xtest, ytrain, ytest = train_test_split(digits.data, digits.target, random_state=rnd)
|
||||
|
||||
print('Loading digits dataset. 8x8=64 features')
|
||||
|
||||
# 0.95+ with n_estimators=10, max_depth=10
|
||||
trees = 10
|
||||
max_depth = 10
|
||||
print('Training {} trees with max_depth {}'.format(trees, max_depth))
|
||||
model = RandomForestClassifier(n_estimators=trees, max_depth=max_depth, random_state=rnd)
|
||||
model.fit(Xtrain, ytrain)
|
||||
|
||||
# Predict
|
||||
ypred = model.predict(Xtest)
|
||||
print('Accuracy on validation set {:.2f}%'.format(metrics.accuracy_score(ypred, ytest)*100))
|
||||
|
||||
# Store the model in a binary file
|
||||
joblib.dump(model, "model")
|
||||
Loading…
x
Reference in New Issue
Block a user