tests/pkg_emlearn: add sample application
This commit is contained in:
parent
5325233928
commit
b5dd94d223
2
tests/pkg_emlearn/.gitignore
vendored
Normal file
2
tests/pkg_emlearn/.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
model.h
|
||||||
|
tmp/
|
||||||
13
tests/pkg_emlearn/Makefile
Normal file
13
tests/pkg_emlearn/Makefile
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
include ../Makefile.tests_common
|
||||||
|
|
||||||
|
USEPKG += emlearn
|
||||||
|
|
||||||
|
BLOBS += digit
|
||||||
|
|
||||||
|
BUILDDEPS += model.h
|
||||||
|
|
||||||
|
include $(RIOTBASE)/Makefile.include
|
||||||
|
|
||||||
|
model.h: $(CURDIR)/model
|
||||||
|
$(Q)$(CURDIR)/generate_model.py
|
||||||
|
$(Q)echo "/* fix for no newline at eof */\n" >> model.h
|
||||||
40
tests/pkg_emlearn/README.md
Normal file
40
tests/pkg_emlearn/README.md
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
## Emlearn package test application
|
||||||
|
|
||||||
|
This application shows how to use a machine learning model with emlearn on RIOT
|
||||||
|
in order to predict a value from a hand written digit image.
|
||||||
|
The model is a [Scikit-Learn](https://scikit-learn.org) random forest estimator
|
||||||
|
trained on the MNIST dataset.
|
||||||
|
|
||||||
|
### Expected output
|
||||||
|
|
||||||
|
The default digit to predict is a hand-written '6', so the application output
|
||||||
|
is the following:
|
||||||
|
|
||||||
|
```
|
||||||
|
Predicted digit: 6
|
||||||
|
```
|
||||||
|
|
||||||
|
### Use the Python scripts
|
||||||
|
|
||||||
|
The application comes with 3 Python scripts:
|
||||||
|
- `generate_digit.py` is used to generate a new digit file. This file is
|
||||||
|
embedded in the firmware image and is used as input for the inference engine.
|
||||||
|
Use the `-i` option to select a different digit.
|
||||||
|
For example, the following command:
|
||||||
|
```
|
||||||
|
$ ./generate_digit.py -i 1
|
||||||
|
```
|
||||||
|
will generate a digit containing a '9'.
|
||||||
|
The digit is displayed at the end of the script so one knows which digit is
|
||||||
|
stored.
|
||||||
|
Note that each time a new digit is generated, the firmware image must be
|
||||||
|
rebuilt to include this new digit.
|
||||||
|
- `train_model.py` is used to train a new Scikit-Learn Random Forest estimator.
|
||||||
|
The trained model is stored in the `model` binary file.
|
||||||
|
```
|
||||||
|
$ ./train_model.py
|
||||||
|
```
|
||||||
|
will just train the model.
|
||||||
|
- `generate_model.py` is used to generate the `sonar.h` header file from the
|
||||||
|
`model` binary file. The script is called automatically by the build system
|
||||||
|
when the `model` binary file is updated.
|
||||||
BIN
tests/pkg_emlearn/digit
Normal file
BIN
tests/pkg_emlearn/digit
Normal file
Binary file not shown.
43
tests/pkg_emlearn/generate_digit.py
Executable file
43
tests/pkg_emlearn/generate_digit.py
Executable file
@ -0,0 +1,43 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
"""Generate a binary file from a sample image of the MNIST dataset.
|
||||||
|
Pixel of the sample are stored as float32, images have size 8x8.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn import datasets
|
||||||
|
|
||||||
|
SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__))
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
output_path = os.path.join(SCRIPT_DIR, args.output)
|
||||||
|
digits = datasets.load_digits()
|
||||||
|
|
||||||
|
rnd = 42
|
||||||
|
_, data, _, _ = train_test_split(digits.data, digits.target,
|
||||||
|
random_state=rnd)
|
||||||
|
data = data[args.index]
|
||||||
|
np.ndarray.tofile(data.astype('float32'), output_path)
|
||||||
|
|
||||||
|
if args.no_plot is False:
|
||||||
|
plt.gray()
|
||||||
|
plt.imshow(data.reshape(8, 8))
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("-i", "--index", type=int, default=0,
|
||||||
|
help="Image index in MNIST test dataset")
|
||||||
|
parser.add_argument("-o", "--output", type=str, default='digit',
|
||||||
|
help="Output filename")
|
||||||
|
parser.add_argument("--no-plot", default=False, action='store_true',
|
||||||
|
help="Disable image display in matplotlib")
|
||||||
|
main(parser.parse_args())
|
||||||
8
tests/pkg_emlearn/generate_model.py
Executable file
8
tests/pkg_emlearn/generate_model.py
Executable file
@ -0,0 +1,8 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import emlearn
|
||||||
|
import joblib
|
||||||
|
|
||||||
|
estimator = joblib.load("model")
|
||||||
|
cmodel = emlearn.convert(estimator)
|
||||||
|
cmodel.save(file='model.h')
|
||||||
36
tests/pkg_emlearn/main.c
Normal file
36
tests/pkg_emlearn/main.c
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
/*
|
||||||
|
* Copyright (C) 2019 Inria
|
||||||
|
*
|
||||||
|
* This file is subject to the terms and conditions of the GNU Lesser
|
||||||
|
* General Public License v2.1. See the file LICENSE in the top level
|
||||||
|
* directory for more details.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @ingroup tests
|
||||||
|
* @{
|
||||||
|
*
|
||||||
|
* @file
|
||||||
|
* @brief Emlearn test application
|
||||||
|
*
|
||||||
|
* @author Alexandre Abadie <alexandre.abadie@inria.fr>
|
||||||
|
*
|
||||||
|
* @}
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <inttypes.h>
|
||||||
|
|
||||||
|
#include "model.h"
|
||||||
|
|
||||||
|
/* the digit array included must be 4-byte aligned */
|
||||||
|
__attribute__((__aligned__(4)))
|
||||||
|
#include "blob/digit.h"
|
||||||
|
|
||||||
|
int main(void)
|
||||||
|
{
|
||||||
|
printf("Predicted digit: %" PRIi32 "\n",
|
||||||
|
model_predict((const float *)digit, digit_len >> 2));
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
BIN
tests/pkg_emlearn/model
Normal file
BIN
tests/pkg_emlearn/model
Normal file
Binary file not shown.
18
tests/pkg_emlearn/tests/01-run.py
Executable file
18
tests/pkg_emlearn/tests/01-run.py
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
# Copyright (C) 2019 Inria
|
||||||
|
#
|
||||||
|
# This file is subject to the terms and conditions of the GNU Lesser
|
||||||
|
# General Public License v2.1. See the file LICENSE in the top level
|
||||||
|
# directory for more details.
|
||||||
|
|
||||||
|
import sys
|
||||||
|
from testrunner import run
|
||||||
|
|
||||||
|
|
||||||
|
def testfunc(child):
|
||||||
|
child.expect_exact("Predicted digit: 6")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
sys.exit(run(testfunc))
|
||||||
27
tests/pkg_emlearn/train_model.py
Executable file
27
tests/pkg_emlearn/train_model.py
Executable file
@ -0,0 +1,27 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import joblib
|
||||||
|
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.ensemble import RandomForestClassifier
|
||||||
|
from sklearn import metrics, datasets
|
||||||
|
|
||||||
|
rnd = 42
|
||||||
|
digits = datasets.load_digits()
|
||||||
|
Xtrain, Xtest, ytrain, ytest = train_test_split(digits.data, digits.target, random_state=rnd)
|
||||||
|
|
||||||
|
print('Loading digits dataset. 8x8=64 features')
|
||||||
|
|
||||||
|
# 0.95+ with n_estimators=10, max_depth=10
|
||||||
|
trees = 10
|
||||||
|
max_depth = 10
|
||||||
|
print('Training {} trees with max_depth {}'.format(trees, max_depth))
|
||||||
|
model = RandomForestClassifier(n_estimators=trees, max_depth=max_depth, random_state=rnd)
|
||||||
|
model.fit(Xtrain, ytrain)
|
||||||
|
|
||||||
|
# Predict
|
||||||
|
ypred = model.predict(Xtest)
|
||||||
|
print('Accuracy on validation set {:.2f}%'.format(metrics.accuracy_score(ypred, ytest)*100))
|
||||||
|
|
||||||
|
# Store the model in a binary file
|
||||||
|
joblib.dump(model, "model")
|
||||||
Loading…
x
Reference in New Issue
Block a user