cpu/esp32: additional _ removed from __uart_*
An additional _ for static symbols has been added by mistake and should be removed. This will make future merging with the reimplementation of ESP8266 easier.
This commit is contained in:
parent
6bbd3a5c27
commit
ec44ee7fb8
@ -61,7 +61,7 @@ struct uart_hw_t {
|
||||
};
|
||||
|
||||
/* hardware ressources */
|
||||
static struct uart_hw_t __uarts[] = {
|
||||
static struct uart_hw_t _uarts[] = {
|
||||
{
|
||||
.regs = &UART0,
|
||||
.pin_txd = GPIO1,
|
||||
@ -100,50 +100,50 @@ static struct uart_hw_t __uarts[] = {
|
||||
extern void uart_div_modify(uint8_t uart_no, uint32_t div);
|
||||
|
||||
/* forward declaration of internal functions */
|
||||
static uint8_t IRAM __uart_rx_one_char (uart_t uart);
|
||||
static void __uart_tx_one_char(uart_t uart, uint8_t data);
|
||||
static void __uart_intr_enable (uart_t uart);
|
||||
static void IRAM __uart_intr_handler (void *para);
|
||||
static uint8_t IRAM _uart_rx_one_char (uart_t uart);
|
||||
static void _uart_tx_one_char(uart_t uart, uint8_t data);
|
||||
static void _uart_intr_enable (uart_t uart);
|
||||
static void IRAM _uart_intr_handler (void *para);
|
||||
|
||||
void __uart_config (uart_t uart)
|
||||
void _uart_config (uart_t uart)
|
||||
{
|
||||
CHECK_PARAM (uart < UART_NUMOF);
|
||||
|
||||
/* setup the baudrate */
|
||||
if (uart == UART_DEV(0) || uart == UART_DEV(1)) {
|
||||
/* for UART0 and UART1, we can us the ROM function */
|
||||
uart_div_modify(uart, (UART_CLK_FREQ << 4) / __uarts[uart].baudrate);
|
||||
uart_div_modify(uart, (UART_CLK_FREQ << 4) / _uarts[uart].baudrate);
|
||||
}
|
||||
else {
|
||||
/* for UART2, we have to control it by registers */
|
||||
__uarts[uart].regs->conf0.tick_ref_always_on = 1; /* use APB_CLK */
|
||||
_uarts[uart].regs->conf0.tick_ref_always_on = 1; /* use APB_CLK */
|
||||
/* compute and set the integral and the decimal part */
|
||||
uint32_t clk = (UART_CLK_FREQ << 4) / __uarts[uart].baudrate;
|
||||
__uarts[uart].regs->clk_div.div_int = clk >> 4;
|
||||
__uarts[uart].regs->clk_div.div_frag = clk & 0xf;
|
||||
uint32_t clk = (UART_CLK_FREQ << 4) / _uarts[uart].baudrate;
|
||||
_uarts[uart].regs->clk_div.div_int = clk >> 4;
|
||||
_uarts[uart].regs->clk_div.div_frag = clk & 0xf;
|
||||
}
|
||||
|
||||
/* set 8 data bits */
|
||||
__uarts[uart].regs->conf0.bit_num = 3;
|
||||
_uarts[uart].regs->conf0.bit_num = 3;
|
||||
/* reset the FIFOs */
|
||||
__uarts[uart].regs->conf0.rxfifo_rst = 1;
|
||||
__uarts[uart].regs->conf0.rxfifo_rst = 0;
|
||||
__uarts[uart].regs->conf0.txfifo_rst = 1;
|
||||
__uarts[uart].regs->conf0.txfifo_rst = 0;
|
||||
_uarts[uart].regs->conf0.rxfifo_rst = 1;
|
||||
_uarts[uart].regs->conf0.rxfifo_rst = 0;
|
||||
_uarts[uart].regs->conf0.txfifo_rst = 1;
|
||||
_uarts[uart].regs->conf0.txfifo_rst = 0;
|
||||
|
||||
if (__uarts[uart].isr_ctx.rx_cb) {
|
||||
if (_uarts[uart].isr_ctx.rx_cb) {
|
||||
/* since reading can only be done byte by byte, we set
|
||||
UART_RXFIFO_FULL_THRHD interrupt level to 1 byte */
|
||||
__uarts[uart].regs->conf1.rxfifo_full_thrhd = 1;
|
||||
_uarts[uart].regs->conf1.rxfifo_full_thrhd = 1;
|
||||
|
||||
/* enable the RX FIFO FULL interrupt */
|
||||
__uart_intr_enable (uart);
|
||||
_uart_intr_enable (uart);
|
||||
|
||||
/* route all UART interrupt sources to same the CPU interrupt */
|
||||
intr_matrix_set(PRO_CPU_NUM, __uarts[uart].int_src, CPU_INUM_UART);
|
||||
intr_matrix_set(PRO_CPU_NUM, _uarts[uart].int_src, CPU_INUM_UART);
|
||||
|
||||
/* we have to enable therefore the CPU interrupt here */
|
||||
xt_set_interrupt_handler(CPU_INUM_UART, __uart_intr_handler, NULL);
|
||||
xt_set_interrupt_handler(CPU_INUM_UART, _uart_intr_handler, NULL);
|
||||
xt_ints_on(BIT(CPU_INUM_UART));
|
||||
}
|
||||
}
|
||||
@ -158,36 +158,36 @@ int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
|
||||
if (uart == UART_DEV(1) || uart == UART_DEV(2)) {
|
||||
|
||||
/* reset the pins when they were already used as UART pins */
|
||||
if (gpio_get_pin_usage(__uarts[uart].pin_txd) == _UART) {
|
||||
gpio_set_pin_usage(__uarts[uart].pin_txd, _GPIO);
|
||||
if (gpio_get_pin_usage(_uarts[uart].pin_txd) == _UART) {
|
||||
gpio_set_pin_usage(_uarts[uart].pin_txd, _GPIO);
|
||||
}
|
||||
if (gpio_get_pin_usage(__uarts[uart].pin_rxd) == _UART) {
|
||||
gpio_set_pin_usage(__uarts[uart].pin_rxd, _GPIO);
|
||||
if (gpio_get_pin_usage(_uarts[uart].pin_rxd) == _UART) {
|
||||
gpio_set_pin_usage(_uarts[uart].pin_rxd, _GPIO);
|
||||
}
|
||||
|
||||
/* try to initialize the pins as GPIOs first */
|
||||
if (gpio_init (__uarts[uart].pin_txd, GPIO_OUT) ||
|
||||
gpio_init (__uarts[uart].pin_rxd, GPIO_IN)) {
|
||||
if (gpio_init (_uarts[uart].pin_txd, GPIO_OUT) ||
|
||||
gpio_init (_uarts[uart].pin_rxd, GPIO_IN)) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* store the usage type in GPIO table */
|
||||
gpio_set_pin_usage(__uarts[uart].pin_txd, _UART);
|
||||
gpio_set_pin_usage(__uarts[uart].pin_rxd, _UART);
|
||||
gpio_set_pin_usage(_uarts[uart].pin_txd, _UART);
|
||||
gpio_set_pin_usage(_uarts[uart].pin_rxd, _UART);
|
||||
|
||||
/* connect TxD pin to the TxD output signal through the GPIO matrix */
|
||||
GPIO.func_out_sel_cfg[__uarts[uart].pin_txd].func_sel = __uarts[uart].signal_txd;
|
||||
GPIO.func_out_sel_cfg[_uarts[uart].pin_txd].func_sel = _uarts[uart].signal_txd;
|
||||
|
||||
/* connect RxD input signal to the RxD pin through the GPIO matrix */
|
||||
GPIO.func_in_sel_cfg[__uarts[uart].signal_rxd].sig_in_sel = 1;
|
||||
GPIO.func_in_sel_cfg[__uarts[uart].signal_rxd].sig_in_inv = 0;
|
||||
GPIO.func_in_sel_cfg[__uarts[uart].signal_rxd].func_sel = __uarts[uart].pin_rxd;
|
||||
GPIO.func_in_sel_cfg[_uarts[uart].signal_rxd].sig_in_sel = 1;
|
||||
GPIO.func_in_sel_cfg[_uarts[uart].signal_rxd].sig_in_inv = 0;
|
||||
GPIO.func_in_sel_cfg[_uarts[uart].signal_rxd].func_sel = _uarts[uart].pin_rxd;
|
||||
}
|
||||
__uarts[uart].baudrate = baudrate;
|
||||
_uarts[uart].baudrate = baudrate;
|
||||
|
||||
/* register interrupt context */
|
||||
__uarts[uart].isr_ctx.rx_cb = rx_cb;
|
||||
__uarts[uart].isr_ctx.arg = arg;
|
||||
_uarts[uart].isr_ctx.rx_cb = rx_cb;
|
||||
_uarts[uart].isr_ctx.arg = arg;
|
||||
|
||||
/* enable and configure the according UART module */
|
||||
uart_poweron(uart);
|
||||
@ -200,7 +200,7 @@ void uart_write(uart_t uart, const uint8_t *data, size_t len)
|
||||
CHECK_PARAM (uart < UART_NUMOF);
|
||||
|
||||
for (size_t i = 0; i < len; i++) {
|
||||
__uart_tx_one_char(uart, data[i]);
|
||||
_uart_tx_one_char(uart, data[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -209,17 +209,17 @@ void uart_poweron (uart_t uart)
|
||||
switch (uart) {
|
||||
#if UART_NUMOF
|
||||
case 0: periph_module_enable(PERIPH_UART0_MODULE);
|
||||
__uart_config(uart);
|
||||
_uart_config(uart);
|
||||
break;
|
||||
#endif
|
||||
#if UART_NUMOF > 1
|
||||
case 1: periph_module_enable(PERIPH_UART1_MODULE);
|
||||
__uart_config(uart);
|
||||
_uart_config(uart);
|
||||
break;
|
||||
#endif
|
||||
#if UART_NUMOF > 2
|
||||
case 2: periph_module_enable(PERIPH_UART2_MODULE);
|
||||
__uart_config(uart);
|
||||
_uart_config(uart);
|
||||
break;
|
||||
#endif
|
||||
default: break;
|
||||
@ -242,7 +242,7 @@ void uart_poweroff (uart_t uart)
|
||||
}
|
||||
}
|
||||
|
||||
void IRAM __uart_intr_handler (void *arg)
|
||||
void IRAM _uart_intr_handler (void *arg)
|
||||
{
|
||||
/* to satisfy the compiler */
|
||||
(void)arg;
|
||||
@ -252,23 +252,23 @@ void IRAM __uart_intr_handler (void *arg)
|
||||
/* UART0, UART1, UART2 peripheral interrupt sources are routed to the same
|
||||
interrupt, so we have to use the status to distinguish interruptees */
|
||||
for (unsigned uart = 0; uart < UART_NUMOF; uart++) {
|
||||
if (__uarts[uart].used) {
|
||||
if (_uarts[uart].used) {
|
||||
DEBUG("%s uart=%d int_st=%08x\n", __func__,
|
||||
uart, __uarts[uart].regs->int_st.val);
|
||||
uart, _uarts[uart].regs->int_st.val);
|
||||
|
||||
if (__uarts[uart].used && __uarts[uart].regs->int_st.rxfifo_full) {
|
||||
if (_uarts[uart].used && _uarts[uart].regs->int_st.rxfifo_full) {
|
||||
/* read one byte of data */
|
||||
uint8_t data = __uart_rx_one_char (uart);
|
||||
uint8_t data = _uart_rx_one_char (uart);
|
||||
/* if registered, call the RX callback function */
|
||||
if (__uarts[uart].isr_ctx.rx_cb) {
|
||||
__uarts[uart].isr_ctx.rx_cb(__uarts[uart].isr_ctx.arg, data);
|
||||
if (_uarts[uart].isr_ctx.rx_cb) {
|
||||
_uarts[uart].isr_ctx.rx_cb(_uarts[uart].isr_ctx.arg, data);
|
||||
}
|
||||
/* clear interrupt flag */
|
||||
__uarts[uart].regs->int_clr.rxfifo_full = 1;
|
||||
_uarts[uart].regs->int_clr.rxfifo_full = 1;
|
||||
}
|
||||
|
||||
/* TODO handle other types of interrupts, for the moment just clear them */
|
||||
__uarts[uart].regs->int_clr.val = ~0x0;
|
||||
_uarts[uart].regs->int_clr.val = ~0x0;
|
||||
}
|
||||
}
|
||||
|
||||
@ -279,32 +279,32 @@ void IRAM __uart_intr_handler (void *arg)
|
||||
#define UART_FIFO_MAX 127
|
||||
|
||||
/* receive one data byte with wait */
|
||||
static uint8_t IRAM __uart_rx_one_char (uart_t uart)
|
||||
static uint8_t IRAM _uart_rx_one_char (uart_t uart)
|
||||
{
|
||||
/* wait until at least von byte is in RX FIFO */
|
||||
while (!__uarts[uart].regs->status.rxfifo_cnt) {}
|
||||
while (!_uarts[uart].regs->status.rxfifo_cnt) {}
|
||||
|
||||
/* read the lowest byte from RX FIFO register */
|
||||
return __uarts[uart].regs->fifo.rw_byte;
|
||||
return _uarts[uart].regs->fifo.rw_byte;
|
||||
}
|
||||
|
||||
/* send one data byte with wait */
|
||||
static void __uart_tx_one_char(uart_t uart, uint8_t data)
|
||||
static void _uart_tx_one_char(uart_t uart, uint8_t data)
|
||||
{
|
||||
/* wait until at least one byte is avaiable in the TX FIFO */
|
||||
while (__uarts[uart].regs->status.txfifo_cnt >= UART_FIFO_MAX) {}
|
||||
while (_uarts[uart].regs->status.txfifo_cnt >= UART_FIFO_MAX) {}
|
||||
|
||||
/* send the byte by placing it in the TX FIFO using MPU */
|
||||
WRITE_PERI_REG(UART_FIFO_AHB_REG(uart), data);
|
||||
}
|
||||
|
||||
static void __uart_intr_enable(uart_t uart)
|
||||
static void _uart_intr_enable(uart_t uart)
|
||||
{
|
||||
__uarts[uart].regs->int_ena.rxfifo_full = 1;
|
||||
__uarts[uart].regs->int_clr.rxfifo_full = 1;
|
||||
__uarts[uart].used = true;
|
||||
_uarts[uart].regs->int_ena.rxfifo_full = 1;
|
||||
_uarts[uart].regs->int_clr.rxfifo_full = 1;
|
||||
_uarts[uart].used = true;
|
||||
|
||||
DEBUG("%s %08x\n", __func__, __uarts[uart].regs->int_ena.val);
|
||||
DEBUG("%s %08x\n", __func__, _uarts[uart].regs->int_ena.val);
|
||||
}
|
||||
|
||||
/* systemwide UART initializations */
|
||||
@ -312,7 +312,7 @@ void uart_system_init (void)
|
||||
{
|
||||
for (unsigned uart = 0; uart < UART_NUMOF; uart++) {
|
||||
/* reset all UART interrupt status registers */
|
||||
__uarts[uart].regs->int_clr.val = ~0;
|
||||
_uarts[uart].regs->int_clr.val = ~0;
|
||||
}
|
||||
}
|
||||
|
||||
@ -320,7 +320,7 @@ void uart_print_config(void)
|
||||
{
|
||||
for (unsigned uart = 0; uart < UART_NUMOF; uart++) {
|
||||
ets_printf("\tUART_DEV(%d)\ttxd=%d rxd=%d\n", uart,
|
||||
__uarts[uart].pin_txd, __uarts[uart].pin_rxd);
|
||||
_uarts[uart].pin_txd, _uarts[uart].pin_rxd);
|
||||
}
|
||||
}
|
||||
|
||||
@ -331,11 +331,11 @@ int uart_set_baudrate(uart_t uart, uint32_t baudrate)
|
||||
CHECK_PARAM_RET (uart < UART_NUMOF, -1);
|
||||
|
||||
/* use APB_CLK */
|
||||
__uarts[uart].regs->conf0.tick_ref_always_on = 1;
|
||||
_uarts[uart].regs->conf0.tick_ref_always_on = 1;
|
||||
/* compute and set the integral and the decimal part */
|
||||
uint32_t clk = (UART_CLK_FREQ << 4) / baudrate;
|
||||
__uarts[uart].regs->clk_div.div_int = clk >> 4;
|
||||
__uarts[uart].regs->clk_div.div_frag = clk & 0xf;
|
||||
_uarts[uart].regs->clk_div.div_int = clk >> 4;
|
||||
_uarts[uart].regs->clk_div.div_frag = clk & 0xf;
|
||||
|
||||
return UART_OK;
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user