/* * Copyright (C) 2018 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup drivers_lis2dh12 * @{ * * @file * @brief LIS2DH12 accelerometer driver implementation * * @author Hauke Petersen * @} */ #include "assert.h" #include "lis2dh12.h" #include "lis2dh12_internal.h" #include "lis2dh12_registers.h" #define ENABLE_DEBUG 0 #include "debug.h" /* the following block contains the SPI mode specific adaption */ #ifdef MODULE_LIS2DH12_SPI /* SPI bus speed and mode */ #define BUS_CLK SPI_CLK_5MHZ #define BUS_MODE SPI_MODE_0 #define BUS_OK SPI_OK /* shortcuts for SPI bus parameters */ #define BUS (dev->p->spi) #define BUS_CS (dev->p->cs) /* flag to set when reading from the device */ #define FLAG_READ (0x80) /* flag to enable address auto incrementation on read or write */ #define FLAG_AINC (0x40) static int _init_bus(const lis2dh12_t *dev) { /* for SPI, we only need to initialize the chip select pin */ if (spi_init_cs(BUS, BUS_CS) != SPI_OK) { return LIS2DH12_NOBUS; } return LIS2DH12_OK; } static int _acquire(const lis2dh12_t *dev) { return spi_acquire(BUS, BUS_CS, BUS_MODE, BUS_CLK); } static void _release(const lis2dh12_t *dev) { spi_release(BUS); } static uint8_t _read(const lis2dh12_t *dev, uint8_t reg) { return spi_transfer_reg(BUS, BUS_CS, (FLAG_READ | reg), 0); } static void _read_burst(const lis2dh12_t *dev, uint8_t reg, void *data, size_t len) { spi_transfer_regs(BUS, BUS_CS, (FLAG_READ | FLAG_AINC | reg), NULL, data, len); } static void _write(const lis2dh12_t *dev, uint8_t reg, uint8_t data) { DEBUG("[lis2dh12] write: reg 0x%02x, val 0x%02x\n", (int)reg, (int)data); spi_transfer_reg(BUS, BUS_CS, reg, data); } /* and now the I2C specific part of the driver */ #else /* I2C config */ #define BUS_OK (0) /* I2C shortcuts */ #define BUS (dev->p->i2c) #define ADDR (dev->p->addr) /* flag for enabling address auto-incrementation */ #define FLAG_AINC (0x80) static int _init_bus(const lis2dh12_t *dev) { (void) dev; /* for I2C, the bus is already set up by auto_init */ return LIS2DH12_OK; } static int _acquire(const lis2dh12_t *dev) { return i2c_acquire(BUS); } static void _release(const lis2dh12_t *dev) { i2c_release(BUS); } static uint8_t _read(const lis2dh12_t *dev, uint8_t reg) { uint8_t tmp; i2c_read_reg(BUS, ADDR, reg, &tmp, 0); return tmp; } static void _read_burst(const lis2dh12_t *dev, uint8_t reg, void *data, size_t len) { i2c_read_regs(BUS, ADDR, (FLAG_AINC | reg), data, len, 0); } static void _write(const lis2dh12_t *dev, uint8_t reg, uint8_t data) { DEBUG("[lis2dh12] write: reg 0x%02x, val 0x%02x\n", (int)reg, (int)data); i2c_write_reg(BUS, ADDR, reg, data, 0); } #endif /* MODULE_LIS2DH12_SPI */ int lis2dh12_init(lis2dh12_t *dev, const lis2dh12_params_t *params) { assert(dev && params); dev->p = params; /* calculate shift amount to convert raw acceleration data */ dev->comp = 4 - (dev->p->scale >> 4); /* initialize the chip select line */ if (_init_bus(dev) != LIS2DH12_OK) { DEBUG("[lis2dh12] error: unable to initialize the bus\n"); return LIS2DH12_NOBUS; } /* acquire the bus and verify that our parameters are valid */ if (_acquire(dev) != BUS_OK) { DEBUG("[lis2dh12] error: unable to acquire the bus\n"); return LIS2DH12_NOBUS; } /* read the WHO_IM_I register to verify the connections to the device */ if (_read(dev, REG_WHO_AM_I) != WHO_AM_I_VAL) { DEBUG("[lis2dh12] error: invalid value read from WHO_AM_I register\n"); _release(dev); return LIS2DH12_NODEV; } /* enable all axes, set sampling rate and scale */ LIS2DH12_CTRL_REG1_t reg1 = {0}; reg1.bit.ODR = dev->p->rate; reg1.bit.Xen = 1; reg1.bit.Yen = 1; reg1.bit.Zen = 1; _write(dev, REG_CTRL_REG4, dev->p->scale); _write(dev, REG_CTRL_REG1, reg1.reg); _release(dev); /* set powermode */ lis2dh12_set_powermode(dev, dev->p->powermode); DEBUG("[lis2dh12] initialization successful\n"); return LIS2DH12_OK; } int lis2dh12_read(const lis2dh12_t *dev, int16_t *data) { assert(dev && data); /* allocate 6 byte to save the 6 RAW data registers */ uint8_t raw[6]; /* read sampled data from the device */ _acquire(dev); /* first check if valid data is available */ if ((_read(dev, REG_STATUS_REG) & LIS2DH12_STATUS_REG_ZYXDA) == 0) { _release(dev); return LIS2DH12_NODATA; } _read_burst(dev, REG_OUT_X_L, raw, 6); _release(dev); /* calculate the actual g-values for the x, y, and z dimension */ for (int i = 0; i < 3; i++) { data[i] = (int16_t)((raw[i*2 + 1] << 8) | raw[i*2]) >> dev->comp; } return LIS2DH12_OK; } #ifdef MODULE_LIS2DH12_INT int lis2dh12_set_int(const lis2dh12_t *dev, const lis2dh12_int_params_t *params, uint8_t int_line) { assert (int_line == LIS2DH12_INT1 || int_line == LIS2DH12_INT2); assert (dev && params); assert (params->cb); _acquire(dev); gpio_t pin = GPIO_UNDEF; switch (int_line){ /* first interrupt line (INT1) */ case LIS2DH12_INT1: pin = dev->p->int1_pin; assert (gpio_is_valid(pin)); if (gpio_init_int(pin, GPIO_IN, GPIO_RISING, params->cb, params->arg)) { return LIS2DH12_NOINT; } _write(dev, REG_CTRL_REG3, params->int_type); _write(dev, REG_INT1_CFG, params->int_config); _write(dev, REG_INT1_THS, params->int_threshold); _write(dev, REG_INT1_DURATION, params->int_duration); break; /* second interrupt line (INT2) */ case LIS2DH12_INT2: pin = dev->p->int2_pin; assert (gpio_is_valid(pin)); if (gpio_init_int(pin, GPIO_IN, GPIO_RISING, params->cb, params->arg)) { return LIS2DH12_NOINT; } _write(dev, REG_CTRL_REG6, params->int_type); _write(dev, REG_INT2_CFG, params->int_config); _write(dev, REG_INT2_THS, params->int_threshold); _write(dev, REG_INT2_DURATION, params->int_duration); break; } _release(dev); return LIS2DH12_OK; } int lis2dh12_read_int_src(const lis2dh12_t *dev, uint8_t *data, uint8_t int_line) { assert(dev && data); assert(int_line == LIS2DH12_INT1 || int_line == LIS2DH12_INT2); _acquire(dev); switch (int_line) { /* first interrupt line (INT1) */ case LIS2DH12_INT1: *data = _read(dev, REG_INT1_SRC); break; /* second interrupt line (INT2) */ case LIS2DH12_INT2: *data = _read(dev, REG_INT2_SRC); break; } _release(dev); return LIS2DH12_OK; } #endif /* MODULE_LIS2DH12_INT */ int lis2dh12_set_fifo(const lis2dh12_t *dev, const lis2dh12_fifo_t *config) { assert(dev && config); LIS2DH12_CTRL_REG5_t reg5 = {0}; LIS2DH12_FIFO_CTRL_REG_t fifo_reg = {0}; if (config->FIFO_mode != LIS2DH12_FIFO_MODE_BYPASS) { reg5.bit.FIFO_EN = 1; } fifo_reg.bit.TR = config->FIFO_set_INT2; fifo_reg.bit.FM = config->FIFO_mode; fifo_reg.bit.FTH = config->FIFO_watermark; _acquire(dev); _write(dev, REG_CTRL_REG5, reg5.reg); _write(dev, REG_FIFO_CTRL_REG, fifo_reg.reg); _release(dev); return LIS2DH12_OK; } int lis2dh12_restart_fifo(const lis2dh12_t *dev) { assert(dev); _acquire(dev); uint8_t reg5 = _read(dev, REG_CTRL_REG5); LIS2DH12_FIFO_CTRL_REG_t fifo_reg = {0}; fifo_reg.reg = _read(dev, REG_FIFO_CTRL_REG); uint8_t fifo_mode_old = fifo_reg.bit.FM; fifo_reg.bit.FM = LIS2DH12_FIFO_MODE_BYPASS; /* switch to Bypass mode */ _write(dev, REG_FIFO_CTRL_REG, fifo_reg.reg); fifo_reg.bit.FM = fifo_mode_old; _write(dev, REG_CTRL_REG5, reg5); _write(dev, REG_FIFO_CTRL_REG, fifo_reg.reg); _release(dev); return LIS2DH12_OK; } int lis2dh12_read_fifo_src(const lis2dh12_t *dev, LIS2DH12_FIFO_SRC_REG_t *data) { assert(dev && data); _acquire(dev); data->reg = _read(dev, REG_FIFO_SRC_REG); _release(dev); return LIS2DH12_OK; } uint8_t lis2dh12_read_fifo_data(const lis2dh12_t *dev, lis2dh12_fifo_data_t *fifo_data, uint8_t number) { assert(dev && fifo_data); /* check max FIFO length */ assert(number <= 32); _acquire(dev); /* check if number is available */ LIS2DH12_FIFO_SRC_REG_t src_reg = {0}; src_reg.reg = _read(dev, REG_FIFO_SRC_REG); if (src_reg.bit.FSS <= number) { number = src_reg.bit.FSS; } if (src_reg.bit.EMPTY) { return 0; } /* calculate X, Y and Z values */ for (uint8_t i = 0; i < number; i++){ fifo_data[i].X_AXIS = (int16_t)(_read(dev, REG_OUT_X_L) | (_read(dev, REG_OUT_X_H) << 8)) >> dev->comp; fifo_data[i].Y_AXIS = (int16_t)(_read(dev, REG_OUT_Y_L) | (_read(dev, REG_OUT_Y_H) << 8)) >> dev->comp; fifo_data[i].Z_AXIS = (int16_t)(_read(dev, REG_OUT_Z_L) | (_read(dev, REG_OUT_Z_H) << 8)) >> dev->comp; } _release(dev); return number; } int lis2dh12_clear_data(const lis2dh12_t *dev) { assert(dev); LIS2DH12_CTRL_REG5_t ctrl_reg5 = {0}; ctrl_reg5.bit.BOOT = 1; _acquire(dev); _write(dev, REG_CTRL_REG5, ctrl_reg5.reg); _release(dev); return LIS2DH12_OK; } int lis2dh12_set_reference(const lis2dh12_t *dev, uint8_t reference) { assert(dev); _acquire(dev); _write(dev, REG_REFERENCE, reference); _release(dev); return LIS2DH12_OK; } int lis2dh12_read_reference(const lis2dh12_t *dev, uint8_t *data) { assert(dev); _acquire(dev); *data = _read(dev, REG_REFERENCE); _release(dev); return LIS2DH12_OK; } int lis2dh12_set_highpass(const lis2dh12_t *dev, const lis2dh12_highpass_t *config) { assert(dev && config); LIS2DH12_CTRL_REG2_t data = {0}; data.bit.HPM = config->Highpass_mode; data.bit.HPCF = config->Highpass_freq; data.bit.FDS = config->DATA_OUT_enable; data.bit.HP_IA1 = config->INT1_enable; data.bit.HP_IA2 = config->INT2_enable; data.bit.HPCLICK = config->CLICK_enable; _acquire(dev); _write(dev, REG_CTRL_REG2, data.reg); _release(dev); return LIS2DH12_OK; } int lis2dh12_set_click(const lis2dh12_t *dev, const lis2dh12_click_t *config) { assert(dev); LIS2DH12_CLICK_CFG_t click_CFG = {0}; if (config->enable_DOUBLE) { click_CFG.bit.XD = config->enable_X_CLICK; click_CFG.bit.YD = config->enable_Y_CLICK; click_CFG.bit.ZD = config->enable_Z_CLICK; } else { click_CFG.bit.XS = config->enable_X_CLICK; click_CFG.bit.YS = config->enable_Y_CLICK; click_CFG.bit.ZS = config->enable_Z_CLICK; } LIS2DH12_CLICK_THS_t click_thold = {0}; click_thold.bit.LIR_CLICK = config->noINT_latency; click_thold.bit.THS = config->CLICK_thold; _acquire(dev); _write(dev, REG_CLICK_CFG, click_CFG.reg); _write(dev, REG_CLICK_THS, click_thold.reg); _write(dev, REG_TIME_LIMIT, config->TIME_limit); _write(dev, REG_TIME_LATENCY, config->TIME_latency); _write(dev, REG_TIME_WINDOW, config->TIME_window); _release(dev); return LIS2DH12_OK; } int lis2dh12_read_click_src(const lis2dh12_t *dev, LIS2DH12_CLICK_SRC_t *data) { assert(dev && data); _acquire(dev); data->reg = _read(dev, REG_CLICK_SRC); _release(dev); return LIS2DH12_OK; } int lis2dh12_set_powermode(const lis2dh12_t *dev, lis2dh12_powermode_t powermode) { assert(dev); LIS2DH12_CTRL_REG1_t reg1 = {0}; LIS2DH12_CTRL_REG4_t reg4 = {0}; _acquire(dev); reg1.reg = _read(dev, REG_CTRL_REG1); reg4.reg = _read(dev, REG_CTRL_REG4); /* set power mode */ if (powermode == LIS2DH12_POWER_LOW) { reg1.bit.LPen = 1; reg4.bit.HR = 0; } else if (powermode == LIS2DH12_POWER_HIGH) { reg1.bit.LPen = 0; reg4.bit.HR = 1; } else if (powermode == LIS2DH12_POWER_NORMAL) { reg1.bit.LPen = 0; reg4.bit.HR = 0; } else { /* power down mode */ reg1.bit.ODR = 0; } _write(dev, REG_CTRL_REG1, reg1.reg); _write(dev, REG_CTRL_REG4, reg4.reg); _release(dev); return LIS2DH12_OK; } int lis2dh12_set_datarate(const lis2dh12_t *dev, lis2dh12_rate_t rate) { assert(dev); assert(rate <= 0x9); LIS2DH12_CTRL_REG1_t reg1 = {0}; _acquire(dev); reg1.reg = _read(dev, REG_CTRL_REG1); reg1.bit.ODR = rate; _write(dev, REG_CTRL_REG1, reg1.reg); _release(dev); return LIS2DH12_OK; } int lis2dh12_set_scale(lis2dh12_t *dev, lis2dh12_scale_t scale) { assert(dev); assert((scale>>4) <= 0x3); LIS2DH12_CTRL_REG4_t reg4 = {0}; _acquire(dev); reg4.reg = _read(dev, REG_CTRL_REG4); reg4.bit.FS = scale >> 4; _write(dev, REG_CTRL_REG4, reg4.reg); _release(dev); dev->comp = 4 - (scale >> 4); return LIS2DH12_OK; } int lis2dh12_poweron(const lis2dh12_t *dev) { assert(dev); /* set default param values */ lis2dh12_set_datarate(dev, dev->p->rate); lis2dh12_set_powermode(dev, dev->p->powermode); return LIS2DH12_OK; } int lis2dh12_poweroff(const lis2dh12_t *dev) { assert(dev); /* set datarate to zero */ lis2dh12_set_datarate(dev, 0); return LIS2DH12_OK; }