4.2 KiB
@defgroup core_sync_mutex Mutex @ingroup core_sync @brief Mutex for thread synchronization
@warning By default, no mitigation against priority inversion is
employed. If your application is subject to priority inversion
and cannot tolerate the additional delay this can cause, use
module core_mutex_priority_inheritance to employ
priority inheritance as mitigation.
Mutex Implementation Basics
Data Structures and Encoding
A mutex_t contains basically a point, which can have one of the following
values:
NULL, in case it is unlockedMUTEX_LOCKEDin case it is locked, but no other thread is waiting on it- A pointer to the head of single linked list of threads (or more precisely
their
thread_tstructures) blocked waiting for obtaining the mutex. This list is terminated byNULL, not byMUTEX_LOCKED
The same information graphically:
Unlocked mutex:
+-------+
| Mutex | --> NULL
+-------+
Locked mutex, no waiters:
+-------+
| Mutex | --> MUTEX_LOCKED
+-------+
Locked mutex, one waiter:
+-------+ +--------+
| Mutex | --> | Waiter | --> NULL
+-------+ +--------+
Locked mutex, 2 waiters:
+-------+ +--------+ +--------+
| Mutex | --> | Waiter | --> | Waiter | --> NULL
+-------+ +--------+ +--------+
Obtaining a Mutex
If a mutex_lock() is called, one of the following happens:
- If the mutex was unlocked (value of
NULL), its value is changed toMUTEX_LOCKEDand the call tomutex_lock()returns right away without blocking. - If the mutex has a value of
MUTEX_LOCKED, it will be changed to point to thethread_tof the running thread. The single item list is terminated by setting thethread_t::rq_entry.nextof the running thread toNULL. The running thread blocks as described below. - Otherwise, the current thread is inserted into the list of waiting threads sorted by thread priority. The running thread blocks as described below.
In case 2) and 3), the running thread will mark itself as blocked (waiting
for a mutex) and yields. Once control is transferred back to this thread
(which is done in the call to mutex_unlock()), it has the mutex and the
function mutex_lock() returns.
Returning a Mutex
If mutex_unlock() is called, one of the following happens:
- If the mutex was already unlocked (value of
NULL), the call returns without modifying the mutex. - If the mutex was locked without waiters (value of
MUTEX_LOCKED), it is unlocked by setting its value toNULL. - Otherwise the first
thread_tfrom the linked list of waiters is removed from the list.- This thread is the one with the highest priority, as the list is sorted by priority.
- This thread's status is set to pending and its added to the appropriate run queue.
- If that thread was the last item in the list, the mutex is set to
MUTEX_LOCK. - The scheduler is run, so that if the unblocked waiting thread can run now, in case it has a higher priority than the running thread.
Debugging deadlocks
The module core_mutex_debug can be used to print on whom mutex_lock()
is waiting. This information includes the thread ID of the owner and the
program counter (PC) from where mutex_lock() was called. Note that the
information is only valid if:
- The mutex was locked by a thread, and not e.g. by
MUTEX_INIT_LOCKED - The function
cpu_get_caller_pc()is implemented for the target architecture. (The thread ID will remain valid, though.) - The caller PC is briefly 0 when the current owner passes over ownership to the next thread, but that thread didn't get CPU time yet to write its PC into the data structure. Even worse, on architectures where an aligned function-pointer-sized write is not atomic, the value may briefly be bogus. Chances are close to zero this ever hits and since this only effects debug output, the ostrich algorithm was chosen here.